* support streaming in conformer
* Add more documents
* support streaming on pruned_transducer_stateless2; add delay penalty; fixes for decode states
* Minor fixes
* streaming for pruned_transducer_stateless4
* Fix conv cache error, support async streaming decoding
* Fix style
* Fix style
* Fix style
* Add torch.jit.export
* mask the initial cache
* Cutting off invalid frames of encoder_embed output
* fix relative positional encoding in streaming decoding for compution saving
* Minor fixes
* Minor fixes
* Minor fixes
* Minor fixes
* Minor fixes
* Fix jit export for torch 1.6
* Minor fixes for streaming decoding
* Minor fixes on decode stream
* move model parameters to train.py
* make states in forward streaming optional
* update pretrain to support streaming model
* update results.md
* update tensorboard and pre-models
* fix typo
* Fix tests
* remove unused arguments
* add streaming decoding ci
* Minor fix
* Minor fix
* disable right context by default
* copy files from existing branch
* add rule in .flake8
* monir style fix
* fix typos
* add tail padding
* refactor, use fixed-length cache for batch decoding
* copy from streaming branch
* copy from streaming branch
* modify emformer states stack and unstack, streaming decoding, to be continued
* refactor Stream class
* remane streaming_feature_extractor.py
* refactor streaming decoding
* test states stack and unstack
* fix bugs, no grad, and num_proccessed_frames
* add modify_beam_search, fast_beam_search
* support torch.jit.export
* use torch.div
* copy from pruned_transducer_stateless4
* modify export.py
* add author info
* delete other test functions
* minor fix
* modify doc
* fix style
* minor fix doc
* minor fix
* minor fix doc
* update RESULTS.md
* fix typo
* add info
* fix typo
* fix doc
* add test function for conv module, and minor fix.
* add copyright info
* minor change of test_emformer.py
* fix doc of stack and unstack, test case with batch_size=1
* update README.md
* update RESULT.md about pruned_transducer_stateless4
* Update RESULT.md
This PR is only to update RESULT.md about pruned_transducer_stateless4.
* set default value of --use-averaged-model to True
* update RESULTS.md and add decode command
* minor fix
* update export.py
* add uploaded files links
* update link
* fix typos
* Copy files for editing.
* Add random combine from #229.
* Minor fixes.
* Pass model parameters from the command line.
* Fix warnings.
* Fix warnings.
* Update readme.
* Rename to avoid conflicts.
* Update results.
* Add CI for pruned_transducer_stateless5
* Typo fixes.
* Remove random combiner.
* Update decode.py and train.py to use periodically averaged models.
* Minor fixes.
* Revert to use random combiner.
* Update results.
* Minor fixes.
* Copy files for editing.
* Use librispeech + gigaspeech with modified conformer.
* Support specifying number of workers for on-the-fly feature extraction.
* Feature extraction code for GigaSpeech.
* Combine XL splits lazily during training.
* Fix warnings in decoding.
* Add decoding code for GigaSpeech.
* Fix decoding the gigaspeech dataset.
We have to use the decoder/joiner networks for the GigaSpeech dataset.
* Disable speed perturbe for XL subset.
* Compute the Nbest oracle WER for RNN-T decoding.
* Minor fixes.
* Minor fixes.
* Add results.
* Update results.
* Update CI.
* Update results.
* Fix style issues.
* Update results.
* Fix style issues.
* Add modified beam search for pruned rnn-t.
* Fix style issues.
* Update RESULTS.md.
* Fix typos.
* Minor fixes.
* Test the pre-trained model using GitHub actions.
* Let the user install optimized_transducer on her own.
* Fix errors in GitHub CI.
* Disable weight decay.
* Remove input feature batchnorm..
* Replace BatchNorm in the Conformer model with LayerNorm.
* Use tanh in the joint network.
* Remove sos ID.
* Reduce the number of decoder layers from 4 to 2.
* Minor fixes.
* Fix typos.
* Begin to add RNN-T training for librispeech.
* Copy files from conformer_ctc.
Will edit it.
* Use conformer/transformer model as encoder.
* Begin to add training script.
* Add training code.
* Remove long utterances to avoid OOM when a large max_duraiton is used.
* Begin to add decoding script.
* Add decoding script.
* Minor fixes.
* Add beam search.
* Use LSTM layers for the encoder.
Need more tunings.
* Use stateless decoder.
* Minor fixes to make it ready for merge.
* Fix README.
* Update RESULT.md to include RNN-T Conformer.
* Minor fixes.
* Fix tests.
* Minor fixes.
* Minor fixes.
* Fix tests.
* Update RESULTS using vocab size 500, att rate 0.8
* Update README.
* Refactoring.
Since FSAs in an Nbest object are linear in structure, we can
add the scores of a path to compute the total scores.
* Update documentation.
* Change default vocab size from 5000 to 500.
* Use new APIs with k2.RaggedTensor
* Fix style issues.
* Update the installation doc, saying it requires at least k2 v1.7
* Extract framewise alignment information using CTC decoding.
* Print environment information.
Print information about k2, lhotse, PyTorch, and icefall.
* Fix CI.
* Fix CI.
* Compute framewise alignment information of the LibriSpeech dataset.
* Update comments for the time to compute alignments of train-960.
* Preserve cut id in mix cut transformer.
* Minor fixes.
* Add doc about how to extract framewise alignments.
* Rename lattice_score_scale to nbest_scale.
* Support pure CTC decoding requiring neither a lexicion nor an n-gram LM.
* Fix style issues.
* Fix a typo.
* Minor fixes.