mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Emformer with conv module and scaling mechanism (#389)
* copy files from existing branch * add rule in .flake8 * monir style fix * fix typos * add tail padding * refactor, use fixed-length cache for batch decoding * copy from streaming branch * copy from streaming branch * modify emformer states stack and unstack, streaming decoding, to be continued * refactor Stream class * remane streaming_feature_extractor.py * refactor streaming decoding * test states stack and unstack * fix bugs, no grad, and num_proccessed_frames * add modify_beam_search, fast_beam_search * support torch.jit.export * use torch.div * copy from pruned_transducer_stateless4 * modify export.py * add author info * delete other test functions * minor fix * modify doc * fix style * minor fix doc * minor fix * minor fix doc * update RESULTS.md * fix typo * add info * fix typo * fix doc * add test function for conv module, and minor fix. * add copyright info * minor change of test_emformer.py * fix doc of stack and unstack, test case with batch_size=1 * update README.md
This commit is contained in:
parent
9f6c748b30
commit
53f38c01d2
1
.flake8
1
.flake8
@ -9,6 +9,7 @@ per-file-ignores =
|
||||
egs/*/ASR/pruned_transducer_stateless*/*.py: E501,
|
||||
egs/*/ASR/*/optim.py: E501,
|
||||
egs/*/ASR/*/scaling.py: E501,
|
||||
egs/librispeech/ASR/conv_emformer_transducer_stateless/*.py: E501, E203
|
||||
|
||||
# invalid escape sequence (cause by tex formular), W605
|
||||
icefall/utils.py: E501, W605
|
||||
|
@ -23,6 +23,7 @@ The following table lists the differences among them.
|
||||
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
|
||||
| `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert|
|
||||
| `pruned_stateless_emformer_rnnt2` | Emformer(from torchaudio) | Embedding + Conv1d | Using Emformer from torchaudio for streaming ASR|
|
||||
| `conv_emformer_transducer_stateless` | Emformer | Embedding + Conv1d | Using Emformer augmented with convolution for streaming ASR + mechanisms in reworked model |
|
||||
|
||||
|
||||
The decoder in `transducer_stateless` is modified from the paper
|
||||
|
@ -1,5 +1,165 @@
|
||||
## Results
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Conv-Emformer RNN-T)
|
||||
|
||||
[conv_emformer_transducer_stateless](./conv_emformer_transducer_stateless)
|
||||
|
||||
It implements [Emformer](https://arxiv.org/abs/2010.10759) augmented with convolution module for streaming ASR.
|
||||
It is modified from [torchaudio](https://github.com/pytorch/audio).
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/pull/389> for more details.
|
||||
|
||||
#### Training on full librispeech
|
||||
|
||||
In this model, the lengths of chunk and right context are 32 frames (i.e., 0.32s) and 8 frames (i.e., 0.08s), respectively.
|
||||
|
||||
The WERs are:
|
||||
|
||||
| | test-clean | test-other | comment | decoding mode |
|
||||
|-------------------------------------|------------|------------|----------------------|----------------------|
|
||||
| greedy search (max sym per frame 1) | 3.63 | 9.61 | --epoch 30 --avg 10 | simulated streaming |
|
||||
| greedy search (max sym per frame 1) | 3.64 | 9.65 | --epoch 30 --avg 10 | streaming |
|
||||
| fast beam search | 3.61 | 9.4 | --epoch 30 --avg 10 | simulated streaming |
|
||||
| fast beam search | 3.58 | 9.5 | --epoch 30 --avg 10 | streaming |
|
||||
| modified beam search | 3.56 | 9.41 | --epoch 30 --avg 10 | simulated streaming |
|
||||
| modified beam search | 3.54 | 9.46 | --epoch 30 --avg 10 | streaming |
|
||||
|
||||
The training command is:
|
||||
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/train.py \
|
||||
--world-size 6 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300 \
|
||||
--master-port 12321 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32
|
||||
```
|
||||
|
||||
The tensorboard log can be found at
|
||||
<https://tensorboard.dev/experiment/4em2FLsxRwGhmoCRQUEoDw/>
|
||||
|
||||
The simulated streaming decoding command using greedy search is:
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--max-duration 300 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method greedy_search \
|
||||
--use-averaged-model True
|
||||
```
|
||||
|
||||
The simulated streaming decoding command using fast beam search is:
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--max-duration 300 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method fast_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
The simulated streaming decoding command using modified beam search is:
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--max-duration 300 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method modified_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam-size 4
|
||||
```
|
||||
|
||||
The streaming decoding command using greedy search is:
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/streaming_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--num-decode-streams 2000 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method greedy_search \
|
||||
--use-averaged-model True
|
||||
```
|
||||
|
||||
The streaming decoding command using fast beam search is:
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/streaming_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--num-decode-streams 2000 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method fast_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
The streaming decoding command using modified beam search is:
|
||||
```bash
|
||||
./conv_emformer_transducer_stateless/streaming_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--num-decode-streams 2000 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method modified_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam-size 4
|
||||
```
|
||||
|
||||
Pretrained models, training logs, decoding logs, and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless-2022-06-11>
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Emformer RNN-T)
|
||||
|
||||
[pruned_stateless_emformer_rnnt2](./pruned_stateless_emformer_rnnt2)
|
||||
@ -280,12 +440,12 @@ The WERs are:
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-------------------------------------------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.75 | 6.74 | --epoch 30 --avg 6 --use_averaged_model False |
|
||||
| greedy search (max sym per frame 1) | 2.69 | 6.64 | --epoch 30 --avg 6 --use_averaged_model True |
|
||||
| fast beam search | 2.72 | 6.67 | --epoch 30 --avg 6 --use_averaged_model False |
|
||||
| fast beam search | 2.66 | 6.6 | --epoch 30 --avg 6 --use_averaged_model True |
|
||||
| modified beam search | 2.67 | 6.68 | --epoch 30 --avg 6 --use_averaged_model False |
|
||||
| modified beam search | 2.62 | 6.57 | --epoch 30 --avg 6 --use_averaged_model True |
|
||||
| greedy search (max sym per frame 1) | 2.75 | 6.74 | --epoch 30 --avg 6 --use-averaged-model False |
|
||||
| greedy search (max sym per frame 1) | 2.69 | 6.64 | --epoch 30 --avg 6 --use-averaged-model True |
|
||||
| fast beam search | 2.72 | 6.67 | --epoch 30 --avg 6 --use-averaged-model False |
|
||||
| fast beam search | 2.66 | 6.6 | --epoch 30 --avg 6 --use-averaged-model True |
|
||||
| modified beam search | 2.67 | 6.68 | --epoch 30 --avg 6 --use-averaged-model False |
|
||||
| modified beam search | 2.62 | 6.57 | --epoch 30 --avg 6 --use-averaged-model True |
|
||||
|
||||
The training command is:
|
||||
|
||||
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/beam_search.py
|
657
egs/librispeech/ASR/conv_emformer_transducer_stateless/decode.py
Executable file
657
egs/librispeech/ASR/conv_emformer_transducer_stateless/decode.py
Executable file
@ -0,0 +1,657 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--max-duration 300 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method greedy_search \
|
||||
--use-averaged-model True
|
||||
|
||||
(2) modified beam search
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--max-duration 300 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method modified_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam-size 4
|
||||
|
||||
(3) fast beam search
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--max-duration 300 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method fast_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless4/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
feature_lens += params.right_context_length
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, params.right_context_length),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/decoder.py
|
1898
egs/librispeech/ASR/conv_emformer_transducer_stateless/emformer.py
Normal file
1898
egs/librispeech/ASR/conv_emformer_transducer_stateless/emformer.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/encoder_interface.py
|
287
egs/librispeech/ASR/conv_emformer_transducer_stateless/export.py
Executable file
287
egs/librispeech/ASR/conv_emformer_transducer_stateless/export.py
Executable file
@ -0,0 +1,287 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./conv_emformer_transducer_stateless/export.py \
|
||||
--exp-dir ./conv_emformer_transducer_stateless/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--use-averaged-model=True \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--jit False
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `conv_emformer_transducer_stateless/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./conv_emformer_transducer_stateless/decode.py \
|
||||
--exp-dir ./conv_emformer_transducer_stateless/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 100 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--use-averaged-model=False \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/librispeech/ASR/conv_emformer_transducer_stateless/joiner.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer_stateless/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/joiner.py
|
1
egs/librispeech/ASR/conv_emformer_transducer_stateless/model.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer_stateless/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/model.py
|
1
egs/librispeech/ASR/conv_emformer_transducer_stateless/optim.py
Symbolic link
1
egs/librispeech/ASR/conv_emformer_transducer_stateless/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/optim.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/scaling.py
|
176
egs/librispeech/ASR/conv_emformer_transducer_stateless/stream.py
Normal file
176
egs/librispeech/ASR/conv_emformer_transducer_stateless/stream.py
Normal file
@ -0,0 +1,176 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from beam_search import Hypothesis, HypothesisList
|
||||
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
class Stream(object):
|
||||
def __init__(
|
||||
self,
|
||||
params: AttributeDict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
LOG_EPS: float = math.log(1e-10),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
device:
|
||||
The device to run this stream.
|
||||
"""
|
||||
self.device = device
|
||||
self.LOG_EPS = LOG_EPS
|
||||
|
||||
# Containing attention caches and convolution caches
|
||||
self.states: Optional[
|
||||
Tuple[List[List[torch.Tensor]], List[torch.Tensor]]
|
||||
] = None
|
||||
# Initailize zero states.
|
||||
self.init_states(params)
|
||||
|
||||
# It uses different attributes for different decoding methods.
|
||||
self.context_size = params.context_size
|
||||
self.decoding_method = params.decoding_method
|
||||
if params.decoding_method == "greedy_search":
|
||||
self.hyp = [params.blank_id] * params.context_size
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
self.hyps = HypothesisList()
|
||||
self.hyps.add(
|
||||
Hypothesis(
|
||||
ys=[params.blank_id] * params.context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
)
|
||||
)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
# feature_len is needed to get partial results.
|
||||
# The rnnt_decoding_stream for fast_beam_search.
|
||||
self.rnnt_decoding_stream: k2.RnntDecodingStream = (
|
||||
k2.RnntDecodingStream(decoding_graph)
|
||||
)
|
||||
self.hyp: Optional[List[int]] = None
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
|
||||
self.ground_truth: str = ""
|
||||
|
||||
self.feature: Optional[torch.Tensor] = None
|
||||
# Make sure all feature frames can be used.
|
||||
# Add 2 here since we will drop the first and last after subsampling.
|
||||
self.chunk_length = params.chunk_length
|
||||
self.pad_length = (
|
||||
params.right_context_length + 2 * params.subsampling_factor + 3
|
||||
)
|
||||
self.num_frames = 0
|
||||
self.num_processed_frames = 0
|
||||
|
||||
# After all feature frames are processed, we set this flag to True
|
||||
self._done = False
|
||||
|
||||
def set_feature(self, feature: torch.Tensor) -> None:
|
||||
assert feature.dim() == 2, feature.dim()
|
||||
self.num_frames = feature.size(0)
|
||||
# tail padding
|
||||
self.feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
(0, 0, 0, self.pad_length),
|
||||
mode="constant",
|
||||
value=self.LOG_EPS,
|
||||
)
|
||||
|
||||
def set_ground_truth(self, ground_truth: str) -> None:
|
||||
self.ground_truth = ground_truth
|
||||
|
||||
def init_states(self, params: AttributeDict) -> None:
|
||||
attn_caches = [
|
||||
[
|
||||
torch.zeros(
|
||||
params.memory_size, params.encoder_dim, device=self.device
|
||||
),
|
||||
torch.zeros(
|
||||
params.left_context_length // params.subsampling_factor,
|
||||
params.encoder_dim,
|
||||
device=self.device,
|
||||
),
|
||||
torch.zeros(
|
||||
params.left_context_length // params.subsampling_factor,
|
||||
params.encoder_dim,
|
||||
device=self.device,
|
||||
),
|
||||
]
|
||||
for _ in range(params.num_encoder_layers)
|
||||
]
|
||||
conv_caches = [
|
||||
torch.zeros(
|
||||
params.encoder_dim,
|
||||
params.cnn_module_kernel - 1,
|
||||
device=self.device,
|
||||
)
|
||||
for _ in range(params.num_encoder_layers)
|
||||
]
|
||||
self.states = (attn_caches, conv_caches)
|
||||
|
||||
def get_feature_chunk(self) -> torch.Tensor:
|
||||
"""Get a chunk of feature frames.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (ret_length, feature_dim).
|
||||
"""
|
||||
update_length = min(
|
||||
self.num_frames - self.num_processed_frames, self.chunk_length
|
||||
)
|
||||
ret_length = update_length + self.pad_length
|
||||
|
||||
ret_feature = self.feature[
|
||||
self.num_processed_frames : self.num_processed_frames + ret_length
|
||||
]
|
||||
# Cut off used frames.
|
||||
# self.feature = self.feature[update_length:]
|
||||
|
||||
self.num_processed_frames += update_length
|
||||
if self.num_processed_frames >= self.num_frames:
|
||||
self._done = True
|
||||
|
||||
return ret_feature
|
||||
|
||||
@property
|
||||
def done(self) -> bool:
|
||||
"""Return True if all feature frames are processed."""
|
||||
return self._done
|
||||
|
||||
def decoding_result(self) -> List[int]:
|
||||
"""Obtain current decoding result."""
|
||||
if self.decoding_method == "greedy_search":
|
||||
return self.hyp[self.context_size :]
|
||||
elif self.decoding_method == "modified_beam_search":
|
||||
best_hyp = self.hyps.get_most_probable(length_norm=True)
|
||||
return best_hyp.ys[self.context_size :]
|
||||
else:
|
||||
assert self.decoding_method == "fast_beam_search"
|
||||
return self.hyp
|
978
egs/librispeech/ASR/conv_emformer_transducer_stateless/streaming_decode.py
Executable file
978
egs/librispeech/ASR/conv_emformer_transducer_stateless/streaming_decode.py
Executable file
@ -0,0 +1,978 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./conv_emformer_transducer_stateless/streaming_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--num-decode-streams 2000 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method greedy_search \
|
||||
--use-averaged-model True
|
||||
|
||||
(2) modified beam search
|
||||
./conv_emformer_transducer_stateless/streaming_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--num-decode-streams 2000 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method modified_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam-size 4
|
||||
|
||||
(3) fast beam search
|
||||
./conv_emformer_transducer_stateless/streaming_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 10 \
|
||||
--exp-dir conv_emformer_transducer_stateless/exp \
|
||||
--num-decode-streams 2000 \
|
||||
--num-encoder-layers 12 \
|
||||
--chunk-length 32 \
|
||||
--cnn-module-kernel 31 \
|
||||
--left-context-length 32 \
|
||||
--right-context-length 8 \
|
||||
--memory-size 32 \
|
||||
--decoding-method fast_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
from lhotse import CutSet
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
||||
from emformer import LOG_EPSILON, stack_states, unstack_states
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from stream import Stream
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_emformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sampling-rate",
|
||||
type=float,
|
||||
default=16000,
|
||||
help="Sample rate of the audio",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def greedy_search(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
streams: List[Stream],
|
||||
) -> None:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
streams:
|
||||
A list of Stream objects.
|
||||
"""
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
T = encoder_out.size(1)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
# decoder_out is of shape (batch_size, 1, decoder_out_dim)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
for t in range(T):
|
||||
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out.unsqueeze(2),
|
||||
decoder_out.unsqueeze(1),
|
||||
project_input=False,
|
||||
)
|
||||
# logits'shape (batch_size, vocab_size)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v != blank_id:
|
||||
streams[i].hyp.append(v)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(
|
||||
decoder_input,
|
||||
need_pad=False,
|
||||
)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
streams: List[Stream],
|
||||
beam: int = 4,
|
||||
):
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
||||
the encoder model.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
beam:
|
||||
Number of active paths during the beam search.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
batch_size = len(streams)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = [stream.hyps for stream in streams]
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.stack(
|
||||
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out, decoder_out, project_input=False
|
||||
)
|
||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(
|
||||
shape=log_probs_shape, value=log_probs
|
||||
)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
for i in range(batch_size):
|
||||
streams[i].hyps = B[i]
|
||||
|
||||
|
||||
def fast_beam_search_one_best(
|
||||
model: nn.Module,
|
||||
streams: List[Stream],
|
||||
encoder_out: torch.Tensor,
|
||||
processed_lens: torch.Tensor,
|
||||
beam: float,
|
||||
max_states: int,
|
||||
max_contexts: int,
|
||||
) -> None:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
A lattice is first obtained using modified beam search, and then
|
||||
the shortest path within the lattice is used as the final output.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
encoder_out:
|
||||
A tensor of shape (N, T, C) from the encoder.
|
||||
processed_lens:
|
||||
A tensor of shape (N,) containing the number of processed frames
|
||||
in `encoder_out` before padding.
|
||||
beam:
|
||||
Beam value, similar to the beam used in Kaldi..
|
||||
max_states:
|
||||
Max states per stream per frame.
|
||||
max_contexts:
|
||||
Max contexts pre stream per frame.
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
|
||||
context_size = model.decoder.context_size
|
||||
vocab_size = model.decoder.vocab_size
|
||||
|
||||
B, T, C = encoder_out.shape
|
||||
assert B == len(streams)
|
||||
|
||||
config = k2.RnntDecodingConfig(
|
||||
vocab_size=vocab_size,
|
||||
decoder_history_len=context_size,
|
||||
beam=beam,
|
||||
max_contexts=max_contexts,
|
||||
max_states=max_states,
|
||||
)
|
||||
individual_streams = []
|
||||
for i in range(B):
|
||||
individual_streams.append(streams[i].rnnt_decoding_stream)
|
||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
for t in range(T):
|
||||
# shape is a RaggedShape of shape (B, context)
|
||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||
shape, contexts = decoding_streams.get_contexts()
|
||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||
contexts = contexts.to(torch.int64)
|
||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||
decoder_out = model.decoder(contexts, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# current_encoder_out is of shape
|
||||
# (shape.NumElements(), 1, joiner_dim)
|
||||
# fmt: off
|
||||
current_encoder_out = torch.index_select(
|
||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||
)
|
||||
# fmt: on
|
||||
logits = model.joiner(
|
||||
current_encoder_out.unsqueeze(2),
|
||||
decoder_out.unsqueeze(1),
|
||||
project_input=False,
|
||||
)
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
log_probs = logits.log_softmax(dim=-1)
|
||||
decoding_streams.advance(log_probs)
|
||||
|
||||
decoding_streams.terminate_and_flush_to_streams()
|
||||
|
||||
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||
|
||||
best_path = one_best_decoding(lattice)
|
||||
hyps = get_texts(best_path)
|
||||
|
||||
for i in range(B):
|
||||
streams[i].hyp = hyps[i]
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
model: nn.Module,
|
||||
streams: List[Stream],
|
||||
params: AttributeDict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> List[int]:
|
||||
"""
|
||||
Args:
|
||||
model:
|
||||
The Transducer model.
|
||||
streams:
|
||||
A list of Stream objects.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
|
||||
Returns:
|
||||
A list of indexes indicating the finished streams.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
|
||||
feature_list = []
|
||||
feature_len_list = []
|
||||
state_list = []
|
||||
num_processed_frames_list = []
|
||||
|
||||
for stream in streams:
|
||||
# We should first get `stream.num_processed_frames`
|
||||
# before calling `stream.get_feature_chunk()`
|
||||
# since `stream.num_processed_frames` would be updated
|
||||
num_processed_frames_list.append(stream.num_processed_frames)
|
||||
feature = stream.get_feature_chunk()
|
||||
feature_len = feature.size(0)
|
||||
feature_list.append(feature)
|
||||
feature_len_list.append(feature_len)
|
||||
state_list.append(stream.states)
|
||||
|
||||
features = pad_sequence(
|
||||
feature_list, batch_first=True, padding_value=LOG_EPSILON
|
||||
).to(device)
|
||||
feature_lens = torch.tensor(feature_len_list, device=device)
|
||||
num_processed_frames = torch.tensor(
|
||||
num_processed_frames_list, device=device
|
||||
)
|
||||
|
||||
# Make sure it has at least 1 frame after subsampling, first-and-last-frame cutting, and right context cutting # noqa
|
||||
tail_length = (
|
||||
3 * params.subsampling_factor + params.right_context_length + 3
|
||||
)
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPSILON,
|
||||
)
|
||||
|
||||
# Stack states of all streams
|
||||
states = stack_states(state_list)
|
||||
|
||||
encoder_out, encoder_out_lens, states = model.encoder.infer(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
states=states,
|
||||
num_processed_frames=num_processed_frames,
|
||||
)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(
|
||||
model=model,
|
||||
streams=streams,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=streams,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
# feature_len is needed to get partial results.
|
||||
# The rnnt_decoding_stream for fast_beam_search.
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
streams=streams,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=(num_processed_frames >> 2) + encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
|
||||
# Update cached states of each stream
|
||||
state_list = unstack_states(states)
|
||||
for i, s in enumerate(state_list):
|
||||
streams[i].states = s
|
||||
|
||||
finished_streams = [i for i, stream in enumerate(streams) if stream.done]
|
||||
return finished_streams
|
||||
|
||||
|
||||
def create_streaming_feature_extractor() -> Fbank:
|
||||
"""Create a CPU streaming feature extractor.
|
||||
|
||||
At present, we assume it returns a fbank feature extractor with
|
||||
fixed options. In the future, we will support passing in the options
|
||||
from outside.
|
||||
|
||||
Returns:
|
||||
Return a CPU streaming feature extractor.
|
||||
"""
|
||||
opts = FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
return Fbank(opts)
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
model: nn.Module,
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
):
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The Transducer model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
|
||||
log_interval = 300
|
||||
|
||||
fbank = create_streaming_feature_extractor()
|
||||
|
||||
decode_results = []
|
||||
streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# Each utterance has a Stream.
|
||||
stream = Stream(
|
||||
params=params,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
LOG_EPS=LOG_EPSILON,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
feature = fbank(samples)
|
||||
stream.set_feature(feature)
|
||||
stream.set_ground_truth(cut.supervisions[0].text)
|
||||
|
||||
streams.append(stream)
|
||||
|
||||
while len(streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
model=model,
|
||||
streams=streams,
|
||||
params=params,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
streams[i].ground_truth.split(),
|
||||
sp.decode(streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
while len(streams) > 0:
|
||||
finished_streams = decode_one_chunk(
|
||||
model=model,
|
||||
streams=streams,
|
||||
params=params,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
streams[i].ground_truth.split(),
|
||||
sp.decode(streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
else:
|
||||
key = f"beam_size_{params.beam_size}"
|
||||
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=sorted(results))
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
# for streaming
|
||||
params.suffix += f"-streaming-chunk-length-{params.chunk_length}"
|
||||
params.suffix += f"-left-context-length-{params.left_context_length}"
|
||||
params.suffix += f"-right-context-length-{params.right_context_length}"
|
||||
params.suffix += f"-memory-size-{params.memory_size}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-streaming-decode")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
params.device = device
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_cuts = [test_clean_cuts, test_other_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
model=model,
|
||||
params=params,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220410)
|
||||
main()
|
@ -0,0 +1,194 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
from emformer import ConvolutionModule, Emformer, stack_states, unstack_states
|
||||
|
||||
|
||||
def test_convolution_module_forward():
|
||||
B, D = 2, 256
|
||||
chunk_length = 4
|
||||
right_context_length = 2
|
||||
num_chunks = 3
|
||||
U = num_chunks * chunk_length
|
||||
R = num_chunks * right_context_length
|
||||
kernel_size = 31
|
||||
conv_module = ConvolutionModule(
|
||||
chunk_length,
|
||||
right_context_length,
|
||||
D,
|
||||
kernel_size,
|
||||
)
|
||||
|
||||
utterance = torch.randn(U, B, D)
|
||||
right_context = torch.randn(R, B, D)
|
||||
|
||||
utterance, right_context = conv_module(utterance, right_context)
|
||||
assert utterance.shape == (U, B, D), utterance.shape
|
||||
assert right_context.shape == (R, B, D), right_context.shape
|
||||
|
||||
|
||||
def test_convolution_module_infer():
|
||||
from emformer import ConvolutionModule
|
||||
|
||||
B, D = 2, 256
|
||||
chunk_length = 4
|
||||
right_context_length = 2
|
||||
num_chunks = 1
|
||||
U = num_chunks * chunk_length
|
||||
R = num_chunks * right_context_length
|
||||
kernel_size = 31
|
||||
conv_module = ConvolutionModule(
|
||||
chunk_length,
|
||||
right_context_length,
|
||||
D,
|
||||
kernel_size,
|
||||
)
|
||||
|
||||
utterance = torch.randn(U, B, D)
|
||||
right_context = torch.randn(R, B, D)
|
||||
cache = torch.randn(B, D, kernel_size - 1)
|
||||
|
||||
utterance, right_context, new_cache = conv_module.infer(
|
||||
utterance, right_context, cache
|
||||
)
|
||||
assert utterance.shape == (U, B, D), utterance.shape
|
||||
assert right_context.shape == (R, B, D), right_context.shape
|
||||
assert new_cache.shape == (B, D, kernel_size - 1), new_cache.shape
|
||||
|
||||
|
||||
def test_state_stack_unstack():
|
||||
num_features = 80
|
||||
chunk_length = 32
|
||||
encoder_dim = 512
|
||||
num_encoder_layers = 2
|
||||
kernel_size = 31
|
||||
left_context_length = 32
|
||||
right_context_length = 8
|
||||
memory_size = 32
|
||||
|
||||
model = Emformer(
|
||||
num_features=num_features,
|
||||
chunk_length=chunk_length,
|
||||
subsampling_factor=4,
|
||||
d_model=encoder_dim,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
cnn_module_kernel=kernel_size,
|
||||
left_context_length=left_context_length,
|
||||
right_context_length=right_context_length,
|
||||
memory_size=memory_size,
|
||||
)
|
||||
|
||||
for batch_size in [1, 2]:
|
||||
attn_caches = [
|
||||
[
|
||||
torch.zeros(memory_size, batch_size, encoder_dim),
|
||||
torch.zeros(left_context_length // 4, batch_size, encoder_dim),
|
||||
torch.zeros(
|
||||
left_context_length // 4,
|
||||
batch_size,
|
||||
encoder_dim,
|
||||
),
|
||||
]
|
||||
for _ in range(num_encoder_layers)
|
||||
]
|
||||
conv_caches = [
|
||||
torch.zeros(batch_size, encoder_dim, kernel_size - 1)
|
||||
for _ in range(num_encoder_layers)
|
||||
]
|
||||
states = [attn_caches, conv_caches]
|
||||
x = torch.randn(batch_size, 23, num_features)
|
||||
x_lens = torch.full((batch_size,), 23)
|
||||
num_processed_frames = torch.full((batch_size,), 0)
|
||||
y, y_lens, states = model.infer(
|
||||
x, x_lens, num_processed_frames=num_processed_frames, states=states
|
||||
)
|
||||
|
||||
state_list = unstack_states(states)
|
||||
states2 = stack_states(state_list)
|
||||
|
||||
for ss, ss2 in zip(states[0], states2[0]):
|
||||
for s, s2 in zip(ss, ss2):
|
||||
assert torch.allclose(s, s2), f"{s.sum()}, {s2.sum()}"
|
||||
|
||||
for s, s2 in zip(states[1], states2[1]):
|
||||
assert torch.allclose(s, s2), f"{s.sum()}, {s2.sum()}"
|
||||
|
||||
|
||||
def test_torchscript_consistency_infer():
|
||||
r"""Verify that scripting Emformer does not change the behavior of method `infer`.""" # noqa
|
||||
num_features = 80
|
||||
chunk_length = 32
|
||||
encoder_dim = 512
|
||||
num_encoder_layers = 2
|
||||
kernel_size = 31
|
||||
left_context_length = 32
|
||||
right_context_length = 8
|
||||
memory_size = 32
|
||||
batch_size = 2
|
||||
|
||||
model = Emformer(
|
||||
num_features=num_features,
|
||||
chunk_length=chunk_length,
|
||||
subsampling_factor=4,
|
||||
d_model=encoder_dim,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
cnn_module_kernel=kernel_size,
|
||||
left_context_length=left_context_length,
|
||||
right_context_length=right_context_length,
|
||||
memory_size=memory_size,
|
||||
).eval()
|
||||
attn_caches = [
|
||||
[
|
||||
torch.zeros(memory_size, batch_size, encoder_dim),
|
||||
torch.zeros(left_context_length // 4, batch_size, encoder_dim),
|
||||
torch.zeros(
|
||||
left_context_length // 4,
|
||||
batch_size,
|
||||
encoder_dim,
|
||||
),
|
||||
]
|
||||
for _ in range(num_encoder_layers)
|
||||
]
|
||||
conv_caches = [
|
||||
torch.zeros(batch_size, encoder_dim, kernel_size - 1)
|
||||
for _ in range(num_encoder_layers)
|
||||
]
|
||||
states = [attn_caches, conv_caches]
|
||||
x = torch.randn(batch_size, 23, num_features)
|
||||
x_lens = torch.full((batch_size,), 23)
|
||||
num_processed_frames = torch.full((batch_size,), 0)
|
||||
y, y_lens, out_states = model.infer(
|
||||
x, x_lens, num_processed_frames=num_processed_frames, states=states
|
||||
)
|
||||
|
||||
sc_model = torch.jit.script(model).eval()
|
||||
sc_y, sc_y_lens, sc_out_states = sc_model.infer(
|
||||
x, x_lens, num_processed_frames=num_processed_frames, states=states
|
||||
)
|
||||
|
||||
assert torch.allclose(y, sc_y)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_convolution_module_forward()
|
||||
test_convolution_module_infer()
|
||||
test_state_stack_unstack()
|
||||
test_torchscript_consistency_infer()
|
1136
egs/librispeech/ASR/conv_emformer_transducer_stateless/train.py
Executable file
1136
egs/librispeech/ASR/conv_emformer_transducer_stateless/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -557,7 +557,7 @@ class HypothesisList(object):
|
||||
return ", ".join(s)
|
||||
|
||||
|
||||
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
||||
def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
||||
"""Return a ragged shape with axes [utt][num_hyps].
|
||||
|
||||
Args:
|
||||
@ -648,7 +648,7 @@ def modified_beam_search(
|
||||
finalized_B = B[batch_size:] + finalized_B
|
||||
B = B[:batch_size]
|
||||
|
||||
hyps_shape = _get_hyps_shape(B).to(device)
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
Loading…
x
Reference in New Issue
Block a user