mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Add streaming Emformer stateless RNN-T. (#390)
* Add streaming Emformer stateless RNN-T. * Update results for streaming Emformer. * Minor fixes.
This commit is contained in:
parent
c4ee2bc0af
commit
fbfc98f1d3
@ -22,6 +22,7 @@ The following table lists the differences among them.
|
||||
| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless2 + save averaged models periodically during training |
|
||||
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
|
||||
| `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert|
|
||||
| `pruned_stateless_emformer_rnnt2` | Emformer(from torchaudio) | Embedding + Conv1d | Using Emformer from torchaudio for streaming ASR|
|
||||
|
||||
|
||||
The decoder in `transducer_stateless` is modified from the paper
|
||||
|
@ -1,5 +1,71 @@
|
||||
## Results
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Emformer RNN-T)
|
||||
|
||||
[pruned_stateless_emformer_rnnt2](./pruned_stateless_emformer_rnnt2)
|
||||
|
||||
Use <https://github.com/k2-fsa/icefall/pull/390>.
|
||||
|
||||
Use [Emformer](https://arxiv.org/abs/2010.10759) from [torchaudio](https://github.com/pytorch/audio)
|
||||
for streaming ASR. The Emformer model is imported from torchaudio without modifications.
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|----------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 4.28 | 11.42 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| modified beam search | 4.22 | 11.16 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
| fast beam search | 4.29 | 11.26 | --epoch 39 --avg 6 --max-duration 600 |
|
||||
|
||||
|
||||
The training commands are:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
|
||||
./pruned_stateless_emformer_rnnt2/train.py \
|
||||
--world-size 8 \
|
||||
--num-epochs 40 \
|
||||
--start-epoch 1 \
|
||||
--exp-dir pruned_stateless_emformer_rnnt2/exp-full \
|
||||
--full-libri 1 \
|
||||
--use-fp16 0 \
|
||||
--max-duration 200 \
|
||||
--prune-range 5 \
|
||||
--lm-scale 0.25 \
|
||||
--master-port 12358 \
|
||||
--num-encoder-layers 18 \
|
||||
--left-context-length 128 \
|
||||
--segment-length 8 \
|
||||
--right-context-length 4
|
||||
```
|
||||
|
||||
The tensorboard log can be found at
|
||||
<https://tensorboard.dev/experiment/ZyiqhAhmRjmr49xml4ofLw/>
|
||||
|
||||
The decoding commands are:
|
||||
```bash
|
||||
for m in greedy_search fast_beam_search modified_beam_search; do
|
||||
for epoch in 39; do
|
||||
for avg in 6; do
|
||||
./pruned_stateless_emformer_rnnt2/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--use-averaged-model 1 \
|
||||
--exp-dir pruned_stateless_emformer_rnnt2/exp-full \
|
||||
--max-duration 50 \
|
||||
--decoding-method $m \
|
||||
--num-encoder-layers 18 \
|
||||
--left-context-length 128 \
|
||||
--segment-length 8 \
|
||||
--right-context-length 4
|
||||
done
|
||||
done
|
||||
done
|
||||
```
|
||||
|
||||
You can find a pretrained model, training logs, decoding logs, and decoding
|
||||
results at:
|
||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-stateless-emformer-rnnt2-2022-06-01>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Transducer 5)
|
||||
|
||||
[pruned_transducer_stateless5](./pruned_transducer_stateless5)
|
||||
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/asr_datamodule.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/beam_search.py
|
645
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decode.py
Executable file
645
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decode.py
Executable file
@ -0,0 +1,645 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_stateless_emformer_rnnt/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_stateless_emformer_rnnt/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./pruned_stateless_emformer_rnnt/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_stateless_emformer_rnnt/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_stateless_emformer_rnnt/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_stateless_emformer_rnnt/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_stateless_emformer_rnnt/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_stateless_emformer_rnnt/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_stateless_emformer_rnnt/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
feature_lens += params.left_context_length
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, params.left_context_length),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 10
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decoder.py
Symbolic link
1
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/decoder.py
|
313
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/emformer.py
Normal file
313
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/emformer.py
Normal file
@ -0,0 +1,313 @@
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
|
||||
try:
|
||||
from torchaudio.models import Emformer as _Emformer
|
||||
except ImportError:
|
||||
import torchaudio
|
||||
|
||||
print(
|
||||
"Please install torchaudio >= 0.11.0. "
|
||||
f"Current version: {torchaudio.__version__}"
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def unstack_states(
|
||||
states: List[List[torch.Tensor]],
|
||||
) -> List[List[List[torch.Tensor]]]:
|
||||
"""Unstack the emformer state corresponding to a batch of utterances
|
||||
into a list of states, were the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Args:
|
||||
states:
|
||||
A list-of-list of tensors. ``len(states)`` equals to number of
|
||||
layers in the emformer. ``states[i]]`` contains the states for
|
||||
the i-th layer. ``states[i][k]`` is either a 3-D tensor of shape
|
||||
``(T, N, C)`` or a 2-D tensor of shape ``(C, N)``
|
||||
"""
|
||||
batch_size = states[0][0].size(1)
|
||||
num_layers = len(states)
|
||||
|
||||
ans = [None] * batch_size
|
||||
for i in range(batch_size):
|
||||
ans[i] = [[] for _ in range(num_layers)]
|
||||
|
||||
for li, layer in enumerate(states):
|
||||
for s in layer:
|
||||
s_list = s.unbind(dim=1)
|
||||
# We will use stack(dim=1) later in stack_states()
|
||||
for bi, b in enumerate(ans):
|
||||
b[li].append(s_list[bi])
|
||||
return ans
|
||||
|
||||
|
||||
def stack_states(
|
||||
state_list: List[List[List[torch.Tensor]]],
|
||||
) -> List[List[torch.Tensor]]:
|
||||
"""Stack list of emformer states that correspond to separate utterances
|
||||
into a single emformer state so that it can be used as an input for
|
||||
emformer when those utterances are formed into a batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the emformer model for a single utterance.
|
||||
Returns:
|
||||
Return a new state corresponding to a batch of utterances.
|
||||
See the input argument of :func:`unstack_states` for the meaning
|
||||
of the returned tensor.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
ans = []
|
||||
for layer in state_list[0]:
|
||||
# layer is a list of tensors
|
||||
if batch_size > 1:
|
||||
ans.append([[s] for s in layer])
|
||||
# Note: We will stack ans[layer][s][] later to get ans[layer][s]
|
||||
else:
|
||||
ans.append([s.unsqueeze(1) for s in layer])
|
||||
|
||||
for b, states in enumerate(state_list[1:], 1):
|
||||
for li, layer in enumerate(states):
|
||||
for si, s in enumerate(layer):
|
||||
ans[li][si].append(s)
|
||||
if b == batch_size - 1:
|
||||
ans[li][si] = torch.stack(ans[li][si], dim=1)
|
||||
# We will use unbind(dim=1) later in unstack_states()
|
||||
return ans
|
||||
|
||||
|
||||
class Emformer(EncoderInterface):
|
||||
"""This is just a simple wrapper around torchaudio.models.Emformer.
|
||||
We may replace it with our own implementation some time later.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
output_dim: int,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int,
|
||||
num_encoder_layers: int,
|
||||
segment_length: int,
|
||||
left_context_length: int,
|
||||
right_context_length: int,
|
||||
max_memory_size: int = 0,
|
||||
dropout: float = 0.1,
|
||||
subsampling_factor: int = 4,
|
||||
vgg_frontend: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
output_dim:
|
||||
The output dimension of the model.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
segment_length:
|
||||
Number of frames per segment before subsampling.
|
||||
left_context_length:
|
||||
Number of frames in the left context before subsampling.
|
||||
right_context_length:
|
||||
Number of frames in the right context before subsampling.
|
||||
max_memory_size:
|
||||
TODO.
|
||||
dropout:
|
||||
Dropout in encoder.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
Currently, subsampling_factor MUST be 4.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_features -> d_model
|
||||
if vgg_frontend:
|
||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.segment_length = segment_length # before subsampling
|
||||
self.right_context_length = right_context_length
|
||||
|
||||
assert right_context_length % subsampling_factor == 0
|
||||
assert segment_length % subsampling_factor == 0
|
||||
assert left_context_length % subsampling_factor == 0
|
||||
|
||||
left_context_length = left_context_length // subsampling_factor
|
||||
right_context_length = right_context_length // subsampling_factor
|
||||
segment_length = segment_length // subsampling_factor
|
||||
|
||||
self.model = _Emformer(
|
||||
input_dim=d_model,
|
||||
num_heads=nhead,
|
||||
ffn_dim=dim_feedforward,
|
||||
num_layers=num_encoder_layers,
|
||||
segment_length=segment_length,
|
||||
dropout=dropout,
|
||||
activation="relu",
|
||||
left_context_length=left_context_length,
|
||||
right_context_length=right_context_length,
|
||||
max_memory_size=max_memory_size,
|
||||
weight_init_scale_strategy="depthwise",
|
||||
tanh_on_mem=False,
|
||||
negative_inf=-1e8,
|
||||
)
|
||||
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
||||
)
|
||||
self.log_eps = math.log(1e-10)
|
||||
|
||||
self._init_state = torch.jit.Attribute([], List[List[torch.Tensor]])
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Input features of shape (N, T, C).
|
||||
x_lens:
|
||||
A int32 tensor of shape (N,) containing valid frames in `x` before
|
||||
padding. We have `x.size(1) == x_lens.max()`
|
||||
Returns:
|
||||
Return a tuple containing two tensors:
|
||||
|
||||
- encoder_out, a tensor of shape (N, T', C)
|
||||
- encoder_out_lens, a int32 tensor of shape (N,) containing the
|
||||
valid frames in `encoder_out` before padding
|
||||
"""
|
||||
x = nn.functional.pad(
|
||||
x,
|
||||
# (left, right, top, bottom)
|
||||
# left/right are for the channel dimension, i.e., axis 2
|
||||
# top/bottom are for the time dimension, i.e., axis 1
|
||||
(0, 0, 0, self.right_context_length),
|
||||
value=self.log_eps,
|
||||
) # (N, T, C) -> (N, T+right_context_length, C)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
x_lens = (((x_lens - 1) >> 1) - 1) >> 1
|
||||
|
||||
emformer_out, emformer_out_lens = self.model(x, x_lens)
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens
|
||||
|
||||
@torch.jit.export
|
||||
def streaming_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
states: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C). Note: x also contains right
|
||||
context frames.
|
||||
x_lens:
|
||||
A 2-D tensor of shap containing the number of valid frames for each
|
||||
element in `x` before padding. Note: It also counts right context
|
||||
frames.
|
||||
states:
|
||||
Internal states of the model.
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- encoder_out, a 3-D tensor of shape (N, T, C)
|
||||
- encoder_out_lens: a 1-D tensor of shape (N,)
|
||||
- next_state, internal model states for the next invocation
|
||||
"""
|
||||
x = self.encoder_embed(x)
|
||||
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
x_lens = (((x_lens - 1) >> 1) - 1) >> 1
|
||||
|
||||
emformer_out, emformer_out_lens, states = self.model.infer(
|
||||
x, x_lens, states
|
||||
)
|
||||
|
||||
if x.size(1) != (
|
||||
self.model.segment_length + self.model.right_context_length
|
||||
):
|
||||
raise ValueError(
|
||||
"Incorrect input shape."
|
||||
f"{x.size(1)} vs {self.model.segment_length} + "
|
||||
f"{self.model.right_context_length}"
|
||||
)
|
||||
|
||||
logits = self.encoder_output_layer(emformer_out)
|
||||
|
||||
return logits, emformer_out_lens, states
|
||||
|
||||
@torch.jit.export
|
||||
def get_init_state(self, device: torch.device) -> List[List[torch.Tensor]]:
|
||||
"""Return the initial state of each layer.
|
||||
|
||||
Returns:
|
||||
Return the initial state of each layer. NOTE: the returned
|
||||
tensors are on the given device. `len(ans) == num_emformer_layers`.
|
||||
"""
|
||||
if self._init_state:
|
||||
# Note(fangjun): It is OK to share the init state as it is
|
||||
# not going to be modified by the model
|
||||
return self._init_state
|
||||
|
||||
batch_size = 1
|
||||
|
||||
ans: List[List[torch.Tensor]] = []
|
||||
for layer in self.model.emformer_layers:
|
||||
s = layer._init_state(batch_size=batch_size, device=device)
|
||||
ans.append(s)
|
||||
|
||||
self._init_state = ans
|
||||
|
||||
return ans
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/encoder_interface.py
|
281
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/export.py
Executable file
281
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/export.py
Executable file
@ -0,0 +1,281 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./prunted_stateless_emformer_rnnt/export.py \
|
||||
--exp-dir ./prunted_stateless_emformer_rnnt/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `prunted_stateless_emformer_rnnt/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./prunted_stateless_emformer_rnnt/decode.py \
|
||||
--exp-dir ./prunted_stateless_emformer_rnnt/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="prunted_stateless_emformer_rnnt/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
for p in model.parameters():
|
||||
p.requires_grad_(False)
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/joiner.py
Symbolic link
1
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless/joiner.py
|
169
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/model.py
Normal file
169
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/model.py
Normal file
@ -0,0 +1,169 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: EncoderInterface,
|
||||
decoder: nn.Module,
|
||||
joiner: nn.Module,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
It is the transcription network in the paper. Its accepts
|
||||
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
|
||||
It returns two tensors: `logits` of shape (N, T, C) and
|
||||
`logit_lens` of shape (N,).
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, C). It should contain
|
||||
one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||
output shape is (N, T, U, C). Note that its output contains
|
||||
unnormalized probs, i.e., not processed by log-softmax.
|
||||
"""
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
prune_range: int = 5,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
|
||||
Note:
|
||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||
the form:
|
||||
lm_scale * lm_probs + am_scale * am_probs +
|
||||
(1-lm_scale-am_scale) * combined_probs
|
||||
"""
|
||||
assert x.ndim == 3, x.shape
|
||||
assert x_lens.ndim == 1, x_lens.shape
|
||||
assert y.num_axes == 2, y.num_axes
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
encoder_out, x_lens = self.encoder(x, x_lens)
|
||||
assert torch.all(x_lens > 0)
|
||||
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, C]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros(
|
||||
(x.size(0), 4), dtype=torch.int64, device=x.device
|
||||
)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = x_lens
|
||||
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=decoder_out,
|
||||
am=encoder_out,
|
||||
symbols=y_padded,
|
||||
termination_symbol=blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
return_grad=True,
|
||||
)
|
||||
|
||||
# ranges : [B, T, prune_range]
|
||||
ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=px_grad,
|
||||
py_grad=py_grad,
|
||||
boundary=boundary,
|
||||
s_range=prune_range,
|
||||
)
|
||||
|
||||
# am_pruned : [B, T, prune_range, C]
|
||||
# lm_pruned : [B, T, prune_range, C]
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=encoder_out, lm=decoder_out, ranges=ranges
|
||||
)
|
||||
|
||||
# logits : [B, T, prune_range, C]
|
||||
logits = self.joiner(am_pruned, lm_pruned)
|
||||
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits,
|
||||
symbols=y_padded,
|
||||
ranges=ranges,
|
||||
termination_symbol=blank_id,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
)
|
||||
|
||||
return (simple_loss, pruned_loss)
|
104
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/noam.py
Normal file
104
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/noam.py
Normal file
@ -0,0 +1,104 @@
|
||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
@ -0,0 +1 @@
|
||||
../conformer_ctc/subsampling.py
|
142
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/test_emformer.py
Executable file
142
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/test_emformer.py
Executable file
@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_stateless_emformer_rnnt/test_emformer.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from emformer import Emformer, stack_states, unstack_states
|
||||
|
||||
|
||||
def test_emformer():
|
||||
N = 3
|
||||
T = 300
|
||||
C = 80
|
||||
|
||||
output_dim = 500
|
||||
|
||||
encoder = Emformer(
|
||||
num_features=C,
|
||||
output_dim=output_dim,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=20,
|
||||
segment_length=16,
|
||||
left_context_length=120,
|
||||
right_context_length=4,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
|
||||
x = torch.rand(N, T, C)
|
||||
x_lens = torch.randint(100, T, (N,))
|
||||
x_lens[0] = T
|
||||
|
||||
y, y_lens = encoder(x, x_lens)
|
||||
|
||||
y_lens = (((x_lens - 1) >> 1) - 1) >> 1
|
||||
assert x.size(0) == x.size(0)
|
||||
assert y.size(1) == max(y_lens)
|
||||
assert y.size(2) == output_dim
|
||||
|
||||
num_param = sum([p.numel() for p in encoder.parameters()])
|
||||
print(f"Number of encoder parameters: {num_param}")
|
||||
|
||||
|
||||
def test_emformer_streaming_forward():
|
||||
N = 3
|
||||
C = 80
|
||||
|
||||
output_dim = 500
|
||||
|
||||
encoder = Emformer(
|
||||
num_features=C,
|
||||
output_dim=output_dim,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=20,
|
||||
segment_length=16,
|
||||
left_context_length=120,
|
||||
right_context_length=4,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
|
||||
x = torch.rand(N, 23, C)
|
||||
x_lens = torch.full((N,), 23)
|
||||
y, y_lens, states = encoder.streaming_forward(x=x, x_lens=x_lens)
|
||||
|
||||
state_list = unstack_states(states)
|
||||
states2 = stack_states(state_list)
|
||||
|
||||
for ss, ss2 in zip(states, states2):
|
||||
for s, s2 in zip(ss, ss2):
|
||||
assert torch.allclose(s, s2), f"{s.sum()}, {s2.sum()}"
|
||||
|
||||
|
||||
def test_emformer_init_state():
|
||||
num_encoder_layers = 20
|
||||
d_model = 512
|
||||
encoder = Emformer(
|
||||
num_features=80,
|
||||
output_dim=500,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
segment_length=16,
|
||||
left_context_length=120,
|
||||
right_context_length=4,
|
||||
vgg_frontend=False,
|
||||
)
|
||||
init_state = encoder.get_init_state()
|
||||
assert len(init_state) == num_encoder_layers
|
||||
layer0_state = init_state[0]
|
||||
assert len(layer0_state) == 4
|
||||
|
||||
assert layer0_state[0].shape == (
|
||||
0, # max_memory_size
|
||||
1, # batch_size
|
||||
d_model, # input_dim
|
||||
)
|
||||
|
||||
assert layer0_state[1].shape == (
|
||||
encoder.model.left_context_length,
|
||||
1, # batch_size
|
||||
d_model, # input_dim
|
||||
)
|
||||
assert layer0_state[2].shape == layer0_state[1].shape
|
||||
assert layer0_state[3].shape == (
|
||||
1, # always 1
|
||||
1, # batch_size
|
||||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
test_emformer()
|
||||
test_emformer_streaming_forward()
|
||||
test_emformer_init_state()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220329)
|
||||
main()
|
59
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/test_model.py
Executable file
59
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/test_model.py
Executable file
@ -0,0 +1,59 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_stateless_emformer_rnnt/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
|
||||
params.attention_dim = 512
|
||||
params.nhead = 8
|
||||
params.dim_feedforward = 2048
|
||||
params.num_encoder_layers = 18
|
||||
params.left_context_length = 128
|
||||
params.segment_length = 8
|
||||
params.right_context_length = 4
|
||||
params.memory_size = 0
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1034
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/train.py
Executable file
1034
egs/librispeech/ASR/pruned_stateless_emformer_rnnt2/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -32,13 +32,15 @@ class Joiner(nn.Module):
|
||||
"""
|
||||
Args:
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, s_range, C).
|
||||
Output from the encoder. Its shape is (N, T, s_range, C) during
|
||||
training or (N, C) in case of streaming decoding.
|
||||
decoder_out:
|
||||
Output from the decoder. Its shape is (N, T, s_range, C).
|
||||
Returns:
|
||||
Output from the decoder. Its shape is (N, T, s_range, C) during
|
||||
training or (N, C) in case of streaming decoding.
|
||||
Return a tensor of shape (N, T, s_range, C).
|
||||
"""
|
||||
assert encoder_out.ndim == decoder_out.ndim == 4
|
||||
assert encoder_out.ndim == decoder_out.ndim
|
||||
assert encoder_out.ndim in (2, 4)
|
||||
assert encoder_out.shape == decoder_out.shape
|
||||
|
||||
logit = encoder_out + decoder_out
|
||||
|
@ -277,10 +277,12 @@ class AsrDataModule:
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
@ -301,8 +303,12 @@ class AsrDataModule:
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
|
@ -799,7 +799,7 @@ def train_one_epoch(
|
||||
f"tot_loss[{tot_loss}], "
|
||||
f"libri_tot_loss[{libri_tot_loss}], "
|
||||
f"giga_tot_loss[{giga_tot_loss}], "
|
||||
f"batch size: {batch_size}"
|
||||
f"batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}"
|
||||
)
|
||||
|
||||
|
@ -26,9 +26,9 @@ from typing import Any, Dict, Optional
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
@ -113,7 +113,7 @@ class LibriSpeechAsrDataModule:
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
@ -306,13 +306,12 @@ class LibriSpeechAsrDataModule:
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
@ -367,7 +366,7 @@ class LibriSpeechAsrDataModule:
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
@ -391,8 +390,10 @@ class LibriSpeechAsrDataModule:
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
|
Loading…
x
Reference in New Issue
Block a user