mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
[Ready to merge]stateless6: states4 + hubert distillation. (#387)
* a copy of stateless4 as base * distillation with hubert * fix typo * example usage * usage * Update egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * fix comment * add results of 100hours * Update egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * Update egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * check fairseq and quantization * a short intro to distillation framework * Update egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * add intro of statless6 in README * fix type error of dst_manifest_dir * Update egs/librispeech/ASR/pruned_transducer_stateless6/hubert_xlarge.py Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * make export.py call stateless6/train.py instead of stateless2/train.py * update results by stateless6 * adjust results format * fix typo Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
This commit is contained in:
parent
c8c8645081
commit
c4ee2bc0af
@ -21,6 +21,7 @@ The following table lists the differences among them.
|
||||
| `pruned_transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss + using GigaSpeech as extra training data |
|
||||
| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless2 + save averaged models periodically during training |
|
||||
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
|
||||
| `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert|
|
||||
|
||||
|
||||
The decoder in `transducer_stateless` is modified from the paper
|
||||
|
@ -3,6 +3,31 @@
|
||||
This page shows the WERs for test-clean/test-other using only
|
||||
train-clean-100 subset as training data.
|
||||
|
||||
## Distillation with hubert
|
||||
### 2022-05-27
|
||||
Related models/log/tensorboard:
|
||||
https://huggingface.co/GuoLiyong/stateless6_baseline_vs_disstillation
|
||||
|
||||
Following results are obtained by ./distillation_with_hubert.sh
|
||||
|
||||
The only differences is in pruned_transducer_stateless6/train.py.
|
||||
|
||||
For baseline: set enable_distillation=False
|
||||
|
||||
For distillation: set enable_distillation=True (the default)
|
||||
|
||||
Decoding method is modified beam search.
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|------------------------------------------|
|
||||
| baseline no vq distillation | 7.09 | 18.88 | --epoch 20, --avg 10, --max-duration 200 |
|
||||
| baseline no vq distillation | 6.83 | 18.19 | --epoch 30, --avg 10, --max-duration 200 |
|
||||
| baseline no vq distillation | 6.73 | 17.79 | --epoch 40, --avg 10, --max-duration 200 |
|
||||
| baseline no vq distillation | 6.75 | 17.68 | --epoch 50, --avg 10, --max-duration 200 |
|
||||
| distillation with hubert | 5.82 | 15.98 | --epoch 20, --avg 10, --max-duration 200 |
|
||||
| distillation with hubert | 5.52 | 15.15 | --epoch 30, --avg 10, --max-duration 200 |
|
||||
| distillation with hubert | 5.45 | 14.94 | --epoch 40, --avg 10, --max-duration 200 |
|
||||
| distillation with hubert | 5.50 | 14.77 | --epoch 50, --avg 10, --max-duration 200 |
|
||||
|
||||
## Conformer encoder + embedding decoder
|
||||
|
||||
### 2022-02-21
|
||||
|
144
egs/librispeech/ASR/distillation_with_hubert.sh
Normal file
144
egs/librispeech/ASR/distillation_with_hubert.sh
Normal file
@ -0,0 +1,144 @@
|
||||
# A short introduction about distillation framework.
|
||||
#
|
||||
# A typical traditional distillation method is
|
||||
# Loss(teacher embedding, student embedding).
|
||||
#
|
||||
# Comparing to these, the proposed distillation framework contains two mainly steps:
|
||||
# codebook indexes = quantizer.encode(teacher embedding)
|
||||
# Loss(codebook indexes, student embedding)
|
||||
#
|
||||
# Things worth to meantion:
|
||||
# 1. The float type teacher embedding is quantized into a sequence of
|
||||
# 8-bit integer codebook indexes.
|
||||
# 2. a middle layer 36(1-based) out of total 48 layers is used to extract
|
||||
# teacher embeddings.
|
||||
# 3. a middle layer 6(1-based) out of total 6 layers is used to extract
|
||||
# student embeddings.
|
||||
|
||||
# This is an example to do distillation with librispeech clean-100 subset.
|
||||
# run with command:
|
||||
# bash distillation_with_hubert.sh [0|1|2|3|4]
|
||||
#
|
||||
# For example command
|
||||
# bash distillation_with_hubert.sh 0
|
||||
# will download hubert model.
|
||||
stage=$1
|
||||
|
||||
# Set the GPUs available.
|
||||
# This script requires at least one GPU.
|
||||
# You MUST set environment variable "CUDA_VISIBLE_DEVICES",
|
||||
# even you only have ONE GPU. It needed by CodebookIndexExtractor to determine numbert of jobs to extract codebook indexes parallelly.
|
||||
|
||||
# Suppose only one GPU exists:
|
||||
# export CUDA_VISIBLE_DEVICES="0"
|
||||
#
|
||||
# Suppose GPU 2,3,4,5 are available.
|
||||
export CUDA_VISIBLE_DEVICES="2,3,4,5"
|
||||
|
||||
|
||||
if [ $stage -eq 0 ]; then
|
||||
# Preparation stage.
|
||||
|
||||
# Install fairseq according to:
|
||||
# https://github.com/pytorch/fairseq
|
||||
# when testing this code:
|
||||
# commit 806855bf660ea748ed7ffb42fe8dcc881ca3aca0 is used.
|
||||
has_fairseq=$(python3 -c "import importlib; print(importlib.util.find_spec('fairseq') is not None)")
|
||||
if [ $has_fairseq == 'False' ]; then
|
||||
echo "Please install fairseq before running following stages"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Install quantization toolkit:
|
||||
# pip install git+https://github.com/danpovey/quantization.git@master
|
||||
# when testing this code:
|
||||
# commit c17ffe67aa2e6ca6b6855c50fde812f2eed7870b is used.
|
||||
|
||||
has_quantization=$(python3 -c "import importlib; print(importlib.util.find_spec('quantization') is not None)")
|
||||
if [ $has_quantization == 'False' ]; then
|
||||
echo "Please install quantization before running following stages"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Download hubert model."
|
||||
# Parameters about model.
|
||||
exp_dir=./pruned_transducer_stateless6/exp/
|
||||
model_id=hubert_xtralarge_ll60k_finetune_ls960
|
||||
hubert_model_dir=${exp_dir}/hubert_models
|
||||
hubert_model=${hubert_model_dir}/${model_id}.pt
|
||||
mkdir -p ${hubert_model_dir}
|
||||
# For more models refer to: https://github.com/pytorch/fairseq/tree/main/examples/hubert
|
||||
if [ -f ${hubert_model} ]; then
|
||||
echo "hubert model alread exists."
|
||||
else
|
||||
wget -c https://dl.fbaipublicfiles.com/hubert/${model_id} -P ${hubert_model}
|
||||
wget -c wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt -P ${hubert_model_dir}
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -d ./data/fbank ]; then
|
||||
echo "This script assumes ./data/fbank is already generated by prepare.sh"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $stage -eq 1 ]; then
|
||||
# This stage is not directly used by codebook indexes extraction.
|
||||
# It is a method to "prove" that the downloaed hubert model
|
||||
# is inferenced in an correct way if WERs look like normal.
|
||||
# Expect WERs:
|
||||
# [test-clean-ctc_greedy_search] %WER 2.04% [1075 / 52576, 92 ins, 104 del, 879 sub ]
|
||||
# [test-other-ctc_greedy_search] %WER 3.71% [1942 / 52343, 152 ins, 126 del, 1664 sub ]
|
||||
./pruned_transducer_stateless6/hubert_decode.py
|
||||
fi
|
||||
|
||||
if [ $stage -eq 2 ]; then
|
||||
# Analysis of disk usage:
|
||||
# With num_codebooks==8, each teacher embedding is quantized into
|
||||
# a sequence of eight 8-bit integers, i.e. only eight bytes are needed.
|
||||
# Training dataset including clean-100h with speed perturb 0.9 and 1.1 has 300 hours.
|
||||
# The output frame rates of Hubert is 50 per second.
|
||||
# Theoretically, 412M = 300 * 3600 * 50 * 8 / 1024 / 1024 is needed.
|
||||
# The actual size of all "*.h5" files storaging codebook index is 450M.
|
||||
# I think the extra "48M" usage is some meta information.
|
||||
|
||||
# Time consumption analysis:
|
||||
# For quantizer training data(teacher embedding) extraction, only 1000 utts from clean-100 are used.
|
||||
# Together with quantizer training, no more than 20 minutes will be used.
|
||||
#
|
||||
# For codebook indexes extraction,
|
||||
# with two pieces of NVIDIA A100 gpus, around three hours needed to process 300 hours training data,
|
||||
# i.e. clean-100 with speed purteb 0.9 and 1.1.
|
||||
|
||||
# GPU usage:
|
||||
# During quantizer's training data(teacher embedding) and it's training,
|
||||
# only the first ONE GPU is used.
|
||||
# During codebook indexes extraction, ALL GPUs set by CUDA_VISIBLE_DEVICES are used.
|
||||
./pruned_transducer_stateless6/extract_codebook_index.py \
|
||||
--full-libri False
|
||||
fi
|
||||
|
||||
if [ $stage -eq 3 ]; then
|
||||
# Example training script.
|
||||
# Note: it's better to set spec-aug-time-warpi-factor=-1
|
||||
WORLD_SIZE=$(echo ${CUDA_VISIBLE_DEVICES} | awk '{n=split($1, _, ","); print n}')
|
||||
./pruned_transducer_stateless6/train.py \
|
||||
--manifest-dir ./data/vq_fbank \
|
||||
--master-port 12359 \
|
||||
--full-libri False \
|
||||
--spec-aug-time-warp-factor -1 \
|
||||
--max-duration 300 \
|
||||
--world-size ${WORLD_SIZE} \
|
||||
--num-epochs 20
|
||||
fi
|
||||
|
||||
if [ $stage -eq 4 ]; then
|
||||
# Results should be similar to:
|
||||
# errs-test-clean-beam_size_4-epoch-20-avg-10-beam-4.txt:%WER = 5.67
|
||||
# errs-test-other-beam_size_4-epoch-20-avg-10-beam-4.txt:%WER = 15.60
|
||||
./pruned_transducer_stateless6/decode.py \
|
||||
--decoding-method "modified_beam_search" \
|
||||
--epoch 20 \
|
||||
--avg 10 \
|
||||
--max-duration 200 \
|
||||
--exp-dir ./pruned_transducer_stateless6/exp
|
||||
fi
|
1
egs/librispeech/ASR/pruned_transducer_stateless6/__init__.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless6/__init__.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/__init__.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless6/beam_search.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless6/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/beam_search.py
|
1064
egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py
Normal file
1064
egs/librispeech/ASR/pruned_transducer_stateless6/conformer.py
Normal file
File diff suppressed because it is too large
Load Diff
634
egs/librispeech/ASR/pruned_transducer_stateless6/decode.py
Executable file
634
egs/librispeech/ASR/pruned_transducer_stateless6/decode.py
Executable file
@ -0,0 +1,634 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless6/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./pruned_transducer_stateless6/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless6/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless6/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless6/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless6/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
layer_results, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
encoder_out = layer_results[-1]
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 10
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += (
|
||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
)
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/librispeech/ASR/pruned_transducer_stateless6/decoder.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless6/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/encoder_interface.py
|
217
egs/librispeech/ASR/pruned_transducer_stateless6/export.py
Executable file
217
egs/librispeech/ASR/pruned_transducer_stateless6/export.py
Executable file
@ -0,0 +1,217 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless2/export.py \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 100 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
80
egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py
Executable file
80
egs/librispeech/ASR/pruned_transducer_stateless6/extract_codebook_index.py
Executable file
@ -0,0 +1,80 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from vq_utils import CodebookIndexExtractor
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from hubert_xlarge import HubertXlargeFineTuned
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=Path,
|
||||
default="pruned_transducer_stateless6/exp/",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_world_size():
|
||||
warn_message = (
|
||||
"It's better to use GPU to extrac codebook indices"
|
||||
"Please set with commonds like: export CUDA_VISIBLE_DEVICES=0,1,2,3"
|
||||
)
|
||||
assert (
|
||||
torch.cuda.is_available() and "CUDA_VISIBLE_DEVICES" in os.environ
|
||||
), warn_message
|
||||
world_size = len(os.environ["CUDA_VISIBLE_DEVICES"].split(","))
|
||||
assert world_size > 0, warn_message
|
||||
return world_size
|
||||
|
||||
|
||||
def main():
|
||||
world_size = get_world_size()
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
HubertXlargeFineTuned.add_arguments(parser)
|
||||
CodebookIndexExtractor.add_arguments(parser)
|
||||
|
||||
args = parser.parse_args()
|
||||
params = AttributeDict()
|
||||
params.update(vars(args))
|
||||
|
||||
# reset some parameters needed by hubert.
|
||||
params.update(HubertXlargeFineTuned.get_params())
|
||||
params.device = torch.device("cuda", 0)
|
||||
params.world_size = world_size
|
||||
|
||||
extractor = CodebookIndexExtractor(params=params)
|
||||
extractor.extract_and_save_embedding()
|
||||
extractor.train_quantizer()
|
||||
extractor.extract_codebook_indexes()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
205
egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py
Executable file
205
egs/librispeech/ASR/pruned_transducer_stateless6/hubert_decode.py
Executable file
@ -0,0 +1,205 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from hubert_xlarge import HubertXlargeFineTuned
|
||||
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=Path,
|
||||
default="pruned_transducer_stateless6/exp/",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
hubert_model: HubertXlargeFineTuned,
|
||||
params: AttributeDict,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
model:
|
||||
The neural model.
|
||||
|
||||
Returns:
|
||||
Return a dict, whose key is decoding method "ctc_greedy_search".
|
||||
Its value is a list of tuples.
|
||||
Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
|
||||
hyps = hubert_model.ctc_greedy_search(batch)
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
assert len(hyps) == len(texts)
|
||||
this_batch = []
|
||||
|
||||
for hyp_text, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
hyp_words = hyp_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results["ctc_greedy_search"].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % 20 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.res_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.res_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info(
|
||||
"Wrote detailed error stats to {}".format(errs_filename)
|
||||
)
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.res_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
HubertXlargeFineTuned.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = AttributeDict()
|
||||
params.update(vars(args))
|
||||
# reset some parameters needed by hubert.
|
||||
params.update(HubertXlargeFineTuned.get_params())
|
||||
|
||||
params.res_dir = (
|
||||
params.exp_dir / f"ctc_greedy_search-{params.teacher_model_id}"
|
||||
)
|
||||
|
||||
setup_logger(f"{params.res_dir}/log/log-ctc_greedy_search")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
params.device = device
|
||||
|
||||
hubert_model = HubertXlargeFineTuned(params)
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(params)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
hubert_model=hubert_model,
|
||||
params=params,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,220 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
from fairseq import (
|
||||
checkpoint_utils,
|
||||
tasks,
|
||||
utils,
|
||||
)
|
||||
from fairseq.data.data_utils import post_process
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
def _load_hubert_model(params: AttributeDict):
|
||||
"""
|
||||
Load the hubert model.
|
||||
|
||||
The model loaded is specified by params.hubert_model_dir
|
||||
and params.teacher_model_id.
|
||||
|
||||
Returned model carries hubert,
|
||||
while processor is responsible to map model's output to human readable transcripts.
|
||||
"""
|
||||
cfg_task = OmegaConf.create(
|
||||
{
|
||||
"_name": "hubert_pretraining",
|
||||
"single_target": True,
|
||||
"fine_tuning": True,
|
||||
"data": str(params.hubert_model_dir),
|
||||
}
|
||||
)
|
||||
model_path = Path(params.hubert_model_dir) / (
|
||||
params.teacher_model_id + ".pt"
|
||||
)
|
||||
task = tasks.setup_task(cfg_task)
|
||||
processor = task.target_dictionary
|
||||
models, saved_cfg = checkpoint_utils.load_model_ensemble(
|
||||
utils.split_paths(str(model_path), separator="\\"),
|
||||
arg_overrides={},
|
||||
strict=True,
|
||||
suffix="",
|
||||
num_shards=1,
|
||||
)
|
||||
model = models[0]
|
||||
model.to(params.device)
|
||||
model.eval()
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
return model, processor
|
||||
|
||||
|
||||
class HubertXlargeFineTuned:
|
||||
"""
|
||||
A wrapper of hubert extra large fine-tuned model.
|
||||
|
||||
A teacher model is responsible for:
|
||||
1. load teacher model
|
||||
2. extracting embeddings to train quantizer.
|
||||
3. extract codebook indices
|
||||
4. verify its performance with ctc_greedy_search method.
|
||||
"""
|
||||
|
||||
def __init__(self, params: AttributeDict):
|
||||
self.model, self.processor = _load_hubert_model(params)
|
||||
self.w2v_model = self.model.w2v_encoder.w2v_model
|
||||
self.params = params
|
||||
|
||||
@staticmethod
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing parameters defined in other modules.
|
||||
|
||||
Their default value conflits to hubert's requirements so they are reset as following.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters defined in asr_datamodule.py
|
||||
"input_strategy": "AudioSamples",
|
||||
"enable_musan": False,
|
||||
"enable_spec_aug": False,
|
||||
"return_cuts": True,
|
||||
"drop_last": False,
|
||||
# parameters used by quantizer
|
||||
"embedding_dim": 1280,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
# Options about model loading.
|
||||
parser.add_argument(
|
||||
"--hubert-model-dir",
|
||||
type=Path,
|
||||
default="./pruned_transducer_stateless6/exp/hubert_models/",
|
||||
help="path to save downloaded hubert models.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--teacher-model-id",
|
||||
type=str,
|
||||
default="hubert_xtralarge_ll60k_finetune_ls960",
|
||||
help="""could be one of:
|
||||
[
|
||||
"hubert_xtralarge_ll60k_finetune_ls960", # fine-tuned model.
|
||||
"hubert_xtralarge_ll60k.pt", # pretrained model without fintuing.
|
||||
]""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--total-layers",
|
||||
type=int,
|
||||
default=48,
|
||||
)
|
||||
|
||||
# Modified from HubertModel.forward to extract all middle layers output
|
||||
def extract_layers_result(
|
||||
self,
|
||||
batch: Dict,
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Extract activations from all layers.
|
||||
"""
|
||||
features = batch["inputs"]
|
||||
|
||||
# corresponding task.normalize in fairseq
|
||||
features = torch.nn.functional.layer_norm(features, features.shape)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
num_samples = supervisions["num_samples"]
|
||||
B, T = features.shape
|
||||
padding_mask = torch.arange(0, T).expand(B, T) > num_samples.reshape(
|
||||
[-1, 1]
|
||||
)
|
||||
|
||||
padding_mask = padding_mask.to(self.params.device)
|
||||
features = features.to(self.params.device)
|
||||
|
||||
features = self.w2v_model.forward_features(features)
|
||||
|
||||
features = features.transpose(1, 2)
|
||||
features = self.w2v_model.layer_norm(features)
|
||||
|
||||
padding_mask = self.w2v_model.forward_padding_mask(
|
||||
features, padding_mask
|
||||
)
|
||||
|
||||
if self.w2v_model.post_extract_proj is not None:
|
||||
features = self.w2v_model.post_extract_proj(features)
|
||||
|
||||
_, layer_results = self.w2v_model.encoder(
|
||||
features,
|
||||
padding_mask=padding_mask,
|
||||
)
|
||||
return layer_results
|
||||
|
||||
def extract_embedding(self, batch) -> Tuple[torch.tensor, List[int]]:
|
||||
"""
|
||||
Eextract embeddings specified by self.params.embedding_layer.
|
||||
|
||||
These embeddings could be used to train quantizer
|
||||
or to extract codebook indexes.
|
||||
|
||||
The returned List[int] is valid length of each embedding.
|
||||
We only want to store codebook indexes related to
|
||||
these valid embeddings.
|
||||
"""
|
||||
supervisions = batch["supervisions"]
|
||||
cut_list = supervisions["cut"]
|
||||
assert all(c.start == 0 for c in cut_list)
|
||||
layer_results = self.extract_layers_result(batch)
|
||||
embeddings = layer_results[self.params.embedding_layer - 1][0]
|
||||
encoder_embedding = embeddings.transpose(0, 1) # N, T, C
|
||||
N = encoder_embedding.shape[0]
|
||||
assert len(cut_list) == N
|
||||
# 320 is from: 16,000 / 50 = sample_rate / hbuert output frame rate
|
||||
num_frames = (supervisions["num_samples"] // 320).tolist()
|
||||
return encoder_embedding, num_frames
|
||||
|
||||
def ctc_greedy_search(self, batch):
|
||||
"""
|
||||
Mainly used to verify hubert model is used correctly.
|
||||
"""
|
||||
layer_results = self.extract_layers_result(batch=batch)
|
||||
encoder_out = self.w2v_model.encoder.layer_norm(
|
||||
layer_results[self.params.total_layers - 1][0]
|
||||
)
|
||||
encoder_out = self.model.w2v_encoder.proj(encoder_out.transpose(0, 1))
|
||||
|
||||
toks = encoder_out.argmax(dim=-1)
|
||||
blank = 0
|
||||
toks = [tok.unique_consecutive() for tok in toks]
|
||||
hyps = [
|
||||
self.processor.string(tok[tok != blank].int().cpu()) for tok in toks
|
||||
]
|
||||
hyps = [post_process(hyp, "letter") for hyp in hyps]
|
||||
|
||||
return hyps
|
1
egs/librispeech/ASR/pruned_transducer_stateless6/joiner.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless6/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/joiner.py
|
249
egs/librispeech/ASR/pruned_transducer_stateless6/model.py
Normal file
249
egs/librispeech/ASR/pruned_transducer_stateless6/model.py
Normal file
@ -0,0 +1,249 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from scaling import ScaledLinear
|
||||
|
||||
from icefall.utils import add_sos
|
||||
|
||||
from quantization.prediction import JointCodebookLoss
|
||||
|
||||
|
||||
class Transducer(nn.Module):
|
||||
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||
"Sequence Transduction with Recurrent Neural Networks"
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: EncoderInterface,
|
||||
decoder: nn.Module,
|
||||
joiner: nn.Module,
|
||||
encoder_dim: int,
|
||||
decoder_dim: int,
|
||||
joiner_dim: int,
|
||||
vocab_size: int,
|
||||
num_codebooks: int = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
It is the transcription network in the paper. Its accepts
|
||||
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||
`logit_lens` of shape (N,).
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||
It should contain one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, encoder_dim) and
|
||||
(N, U, decoder_dim).
|
||||
Its output shape is (N, T, U, vocab_size). Note that its output
|
||||
contains unnormalized probs, i.e., not processed by log-softmax.
|
||||
num_codebooks:
|
||||
Used by distillation loss.
|
||||
"""
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
self.simple_am_proj = ScaledLinear(
|
||||
encoder_dim, vocab_size, initial_speed=0.5
|
||||
)
|
||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||
if num_codebooks > 0:
|
||||
self.codebook_loss_net = JointCodebookLoss(
|
||||
predictor_channels=encoder_dim, num_codebooks=num_codebooks
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
prune_range: int = 5,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
warmup: float = 1.0,
|
||||
codebook_indexes: torch.Tensor = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
warmup:
|
||||
A value warmup >= 0 that determines which modules are active, values
|
||||
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||
codebook_indexes:
|
||||
codebook_indexes extracted from a teacher model.
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
|
||||
Note:
|
||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||
the form:
|
||||
lm_scale * lm_probs + am_scale * am_probs +
|
||||
(1-lm_scale-am_scale) * combined_probs
|
||||
"""
|
||||
assert x.ndim == 3, x.shape
|
||||
assert x_lens.ndim == 1, x_lens.shape
|
||||
assert y.num_axes == 2, y.num_axes
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
layer_results, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||
encoder_out = layer_results[-1]
|
||||
middle_layer_output = layer_results[0]
|
||||
if self.training and codebook_indexes is not None:
|
||||
assert hasattr(self, "codebook_loss_net")
|
||||
if codebook_indexes.shape[1] != middle_layer_output.shape[1]:
|
||||
codebook_indexes = self.concat_successive_codebook_indexes(
|
||||
middle_layer_output, codebook_indexes
|
||||
)
|
||||
codebook_loss = self.codebook_loss_net(
|
||||
middle_layer_output, codebook_indexes
|
||||
)
|
||||
else:
|
||||
# when codebook index is not available.
|
||||
codebook_loss = None
|
||||
|
||||
assert torch.all(x_lens > 0)
|
||||
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros(
|
||||
(x.size(0), 4), dtype=torch.int64, device=x.device
|
||||
)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = x_lens
|
||||
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=lm.float(),
|
||||
am=am.float(),
|
||||
symbols=y_padded,
|
||||
termination_symbol=blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
return_grad=True,
|
||||
)
|
||||
|
||||
# ranges : [B, T, prune_range]
|
||||
ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=px_grad,
|
||||
py_grad=py_grad,
|
||||
boundary=boundary,
|
||||
s_range=prune_range,
|
||||
)
|
||||
|
||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.joiner.encoder_proj(encoder_out),
|
||||
lm=self.joiner.decoder_proj(decoder_out),
|
||||
ranges=ranges,
|
||||
)
|
||||
|
||||
# logits : [B, T, prune_range, vocab_size]
|
||||
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits.float(),
|
||||
symbols=y_padded,
|
||||
ranges=ranges,
|
||||
termination_symbol=blank_id,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
)
|
||||
|
||||
return (simple_loss, pruned_loss, codebook_loss)
|
||||
|
||||
@staticmethod
|
||||
def concat_successive_codebook_indexes(
|
||||
middle_layer_output, codebook_indexes
|
||||
):
|
||||
# Output rate of hubert is 50 frames per second,
|
||||
# while that of current encoder is 25.
|
||||
# Following code handling two issues:
|
||||
# 1.
|
||||
# Roughly speaking, to generate another frame output,
|
||||
# hubert needes extra two frames,
|
||||
# while current encoder needs extra four frames.
|
||||
# Suppose there are only extra three frames provided,
|
||||
# hubert will generate another frame while current encoder does nothing.
|
||||
# 2.
|
||||
# codebook loss is a frame-wise loss, to enalbe 25 frames studnet output
|
||||
# learns from 50 frames teacher output, two successive frames of teacher model
|
||||
# output is concatenated together.
|
||||
t_expected = middle_layer_output.shape[1]
|
||||
N, T, C = codebook_indexes.shape
|
||||
|
||||
# Handling issue 1.
|
||||
if T >= t_expected * 2:
|
||||
codebook_indexes = codebook_indexes[:, : t_expected * 2, :]
|
||||
# Handling issue 2.
|
||||
codebook_indexes = codebook_indexes.reshape(N, t_expected, C * 2)
|
||||
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
|
||||
return codebook_indexes
|
1
egs/librispeech/ASR/pruned_transducer_stateless6/optim.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless6/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/optim.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless6/scaling.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless6/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/scaling.py
|
51
egs/librispeech/ASR/pruned_transducer_stateless6/test_model.py
Executable file
51
egs/librispeech/ASR/pruned_transducer_stateless6/test_model.py
Executable file
@ -0,0 +1,51 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./pruned_transducer_stateless6/test_model.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def test_model():
|
||||
params = get_params()
|
||||
params.vocab_size = 500
|
||||
params.blank_id = 0
|
||||
params.context_size = 2
|
||||
params.unk_id = 2
|
||||
params.enable_distiallation = False
|
||||
|
||||
model = get_transducer_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
print(f"Number of model parameters: {num_param}")
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
torch.jit.script(model)
|
||||
|
||||
|
||||
def main():
|
||||
test_model()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1106
egs/librispeech/ASR/pruned_transducer_stateless6/train.py
Executable file
1106
egs/librispeech/ASR/pruned_transducer_stateless6/train.py
Executable file
File diff suppressed because it is too large
Load Diff
399
egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py
Normal file
399
egs/librispeech/ASR/pruned_transducer_stateless6/vq_utils.py
Normal file
@ -0,0 +1,399 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import quantization
|
||||
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from hubert_xlarge import HubertXlargeFineTuned
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
)
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.features.io import NumpyHdf5Writer
|
||||
|
||||
|
||||
class CodebookIndexExtractor:
|
||||
"""
|
||||
A wrapper of quantiation.Quantizer.
|
||||
|
||||
It's responsible for:
|
||||
1. extract and save activations from a teacher model.
|
||||
2. train quantizer from previous activations.
|
||||
3. extract codebook indexes for whole training set.
|
||||
Normally this step needs multi GPUs.
|
||||
"""
|
||||
|
||||
def __init__(self, params: AttributeDict):
|
||||
|
||||
self.params = params
|
||||
params.subsets = ["clean-100"]
|
||||
if self.params.full_libri:
|
||||
self.params.subsets += ["clean-360", "other-500"]
|
||||
|
||||
self.init_dirs()
|
||||
setup_logger(f"{self.vq_dir}/log-vq_extraction")
|
||||
|
||||
def init_dirs(self):
|
||||
# vq_dir is the root dir for quantizer:
|
||||
# training data/ quantizer / extracted codebook indexes
|
||||
self.vq_dir = (
|
||||
self.params.exp_dir / f"vq/{self.params.teacher_model_id}/"
|
||||
)
|
||||
self.vq_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# manifest_dir for :
|
||||
# splited original manifests,
|
||||
# extracted codebook indexes and their related manifests
|
||||
self.manifest_dir = self.vq_dir / f"splits{self.params.world_size}"
|
||||
self.manifest_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# It's doesn't matter whether ori_manifest_dir is str or Path.
|
||||
# Set it to Path to be consistent.
|
||||
self.ori_manifest_dir = Path("./data/fbank/")
|
||||
self.dst_manifest_dir = Path("./data/vq_fbank/")
|
||||
|
||||
self.dst_manifest_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
# Options about teacher embeddings eatraction.
|
||||
parser.add_argument(
|
||||
"--embedding-layer",
|
||||
type=int,
|
||||
help="layer to extract teacher embeddings, 1-based.",
|
||||
default=36,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-utts",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="num utts to train quantizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-codebooks",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""number of codebooks,
|
||||
i.e. number of codebook indexes each teacher embedding is compressed.
|
||||
""",
|
||||
)
|
||||
|
||||
@property
|
||||
def embedding_file_path(self):
|
||||
"""
|
||||
The saved embedding is used to train quantizer.
|
||||
"""
|
||||
embedding_file_id = (
|
||||
f"num_utts_{self.params.num_utts}"
|
||||
+ f"-layer_{self.params.embedding_layer}"
|
||||
+ "-embedding_embeddings.h5"
|
||||
)
|
||||
|
||||
embedding_file_path = self.vq_dir / embedding_file_id
|
||||
return embedding_file_path
|
||||
|
||||
@torch.no_grad()
|
||||
def extract_and_save_embedding(self):
|
||||
"""
|
||||
The extract embedding is used to train quantizer.
|
||||
"""
|
||||
if self.embedding_file_path.exists():
|
||||
warn_message = (
|
||||
f"{self.embedding_file_path} already exists."
|
||||
+ " Skip extracting embeddings from teacher model"
|
||||
)
|
||||
logging.warn(warn_message)
|
||||
return
|
||||
|
||||
total_cuts = 0
|
||||
with NumpyHdf5Writer(self.embedding_file_path) as writer:
|
||||
for batch_idx, batch in enumerate(self.quantizer_train_dl):
|
||||
cut_list = batch["supervisions"]["cut"]
|
||||
(
|
||||
encoder_embedding,
|
||||
num_frames,
|
||||
) = self.teacher_model.extract_embedding(batch)
|
||||
encoder_embedding = encoder_embedding.cpu().numpy()
|
||||
for idx, cut in enumerate(cut_list):
|
||||
cut.encoder_embedding = writer.store_array(
|
||||
key=cut.id,
|
||||
value=encoder_embedding[idx][: num_frames[idx]],
|
||||
)
|
||||
total_cuts += len(cut_list)
|
||||
logging.info(
|
||||
f"Processed {total_cuts} output of {self.params.num_utts} cuts."
|
||||
)
|
||||
|
||||
logging.info(f"Processed all {total_cuts} cuts.")
|
||||
|
||||
@property
|
||||
def quantizer_train_dl(self):
|
||||
# used to train quantizer.
|
||||
librispeech = LibriSpeechAsrDataModule(self.params)
|
||||
quantizer_trian_cuts = librispeech.train_clean_100_cuts().subset(
|
||||
first=self.params.num_utts
|
||||
)
|
||||
return librispeech.train_dataloaders(quantizer_trian_cuts)
|
||||
|
||||
@cached_property
|
||||
def quantizer_file_path(self):
|
||||
quantizer_file_id = (
|
||||
f"num_utts-{self.params.num_utts}"
|
||||
+ f"-layer-{self.params.embedding_layer}"
|
||||
+ f"-num_codebooks_{self.params.num_codebooks}"
|
||||
+ "-quantizer.pt"
|
||||
)
|
||||
quantizer_file_path = Path(self.vq_dir) / quantizer_file_id
|
||||
|
||||
return quantizer_file_path
|
||||
|
||||
def train_quantizer(self):
|
||||
if self.quantizer_file_path.exists():
|
||||
warn_message = (
|
||||
f"{self.quantizer_file_path} already exists."
|
||||
+ " Skip trainning quantizer."
|
||||
)
|
||||
logging.warn(warn_message)
|
||||
return
|
||||
|
||||
assert self.embedding_file_path.exists()
|
||||
trainer = quantization.QuantizerTrainer(
|
||||
dim=self.params.embedding_dim,
|
||||
bytes_per_frame=self.params.num_codebooks,
|
||||
device=self.params.device,
|
||||
)
|
||||
train, valid = quantization.read_hdf5_data(self.embedding_file_path)
|
||||
B = 512 # Minibatch size, this is very arbitrary, it's close to what we used
|
||||
# when we tuned this method.
|
||||
|
||||
def minibatch_generator(data: torch.Tensor, repeat: bool):
|
||||
assert 3 * B < data.shape[0]
|
||||
cur_offset = 0
|
||||
while True if repeat else cur_offset + B <= data.shape[0]:
|
||||
start = cur_offset % (data.shape[0] + 1 - B)
|
||||
end = start + B
|
||||
cur_offset += B
|
||||
yield data[start:end, :].to(self.params.device).to(
|
||||
dtype=torch.float
|
||||
)
|
||||
|
||||
for x in minibatch_generator(train, repeat=True):
|
||||
trainer.step(x)
|
||||
if trainer.done():
|
||||
break
|
||||
|
||||
quantizer = trainer.get_quantizer()
|
||||
torch.save(quantizer.state_dict(), self.quantizer_file_path)
|
||||
|
||||
def split_ori_manifests(self):
|
||||
"""
|
||||
When multi gpus are available, split original manifests
|
||||
and extract codebook indexes in a prallel way.
|
||||
"""
|
||||
for subset in self.params.subsets:
|
||||
logging.info(f"About to split {subset}.")
|
||||
ori_manifest = f"./data/fbank/cuts_train-{subset}.json.gz"
|
||||
split_cmd = f"lhotse split {self.params.world_size} {ori_manifest} {self.manifest_dir}"
|
||||
os.system(f"{split_cmd}")
|
||||
|
||||
def merge_vq_manifests(self):
|
||||
"""
|
||||
Merge generated vq included manfiests and storage to self.dst_manifest_dir.
|
||||
"""
|
||||
for subset in self.params.subsets:
|
||||
vq_manifests = f"{self.manifest_dir}/with_codebook_indexes-cuts_train-{subset}*.json.gz"
|
||||
dst_vq_manifest = (
|
||||
self.dst_manifest_dir / f"cuts_train-{subset}.json.gz"
|
||||
)
|
||||
if 1 == self.params.world_size:
|
||||
merge_cmd = f"cp {vq_manifests} {dst_vq_manifest}"
|
||||
else:
|
||||
merge_cmd = f"lhotse combine {vq_manifests} {dst_vq_manifest}"
|
||||
os.system(f"{merge_cmd}")
|
||||
|
||||
def reuse_manifests(self):
|
||||
"""
|
||||
Only train-* subsets are extracted codebook indexes from.
|
||||
The reset subsets are just a link from ./data/fbank.
|
||||
"""
|
||||
|
||||
def is_train(manifest: str) -> bool:
|
||||
for train_subset in ["clean-100", "clean-360", "other-500"]:
|
||||
if train_subset in manifest:
|
||||
return True
|
||||
return False
|
||||
|
||||
# Type of self.ori_nanifest_dir is Path
|
||||
# and result type of glob.glob is str.
|
||||
reusable_manifests = [
|
||||
manifest
|
||||
for manifest in glob.glob(f"{self.ori_manifest_dir}/*.gz")
|
||||
if not is_train(manifest)
|
||||
]
|
||||
for manifest_path in reusable_manifests:
|
||||
ori_manifest_path = Path(manifest_path).resolve()
|
||||
# Path cannot used as a parameter of str.replace.
|
||||
# Cast them to str.
|
||||
dst_manifest_path = Path(
|
||||
manifest_path.replace(
|
||||
str(self.ori_manifest_dir), str(self.dst_manifest_dir)
|
||||
)
|
||||
).resolve()
|
||||
if not dst_manifest_path.exists():
|
||||
os.symlink(ori_manifest_path, dst_manifest_path)
|
||||
|
||||
def create_vq_fbank(self):
|
||||
self.reuse_manifests()
|
||||
self.merge_vq_manifests()
|
||||
|
||||
@cached_property
|
||||
def teacher_model(self):
|
||||
return HubertXlargeFineTuned(self.params)
|
||||
|
||||
@cached_property
|
||||
def quantizer(self):
|
||||
assert self.quantizer_file_path.exists()
|
||||
quantizer = quantization.Quantizer(
|
||||
dim=self.params.embedding_dim,
|
||||
num_codebooks=self.params.num_codebooks,
|
||||
codebook_size=256,
|
||||
)
|
||||
quantizer.load_state_dict(torch.load(self.quantizer_file_path))
|
||||
quantizer.to(self.params.device)
|
||||
return quantizer
|
||||
|
||||
def load_ori_dl(self, subset):
|
||||
if self.params.world_size == 1:
|
||||
ori_manifest_path = f"./data/fbank/cuts_train-{subset}.json.gz"
|
||||
else:
|
||||
ori_manifest_path = (
|
||||
self.manifest_dir
|
||||
/ f"cuts_train-{subset}.{self.params.manifest_index}.json.gz"
|
||||
)
|
||||
|
||||
cuts = load_manifest(ori_manifest_path)
|
||||
dl = LibriSpeechAsrDataModule(self.params).train_dataloaders(cuts)
|
||||
return dl
|
||||
|
||||
def _release_gpu_memory(self):
|
||||
self.__dict__.pop("teacher_model", None)
|
||||
self.__dict__.pop("quantizer", None)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def extract_codebook_indexes(self):
|
||||
if self.params.world_size == 1:
|
||||
self.extract_codebook_indexes_imp()
|
||||
else:
|
||||
# Since a new extractor will be created for each rank in
|
||||
# compute_codebook_indexes_parallel, it's better to
|
||||
# release the GPU memory occupied by current extractor.
|
||||
self._release_gpu_memory()
|
||||
|
||||
# Prepare split manifests for each job.
|
||||
self.split_ori_manifests()
|
||||
mp.spawn(
|
||||
compute_codebook_indexes_parallel,
|
||||
args=(self.params,),
|
||||
nprocs=self.params.world_size,
|
||||
join=True,
|
||||
)
|
||||
self.create_vq_fbank()
|
||||
|
||||
@torch.no_grad()
|
||||
def extract_codebook_indexes_imp(self):
|
||||
for subset in self.params.subsets:
|
||||
num_cuts = 0
|
||||
cuts = []
|
||||
if self.params.world_size == 1:
|
||||
manifest_file_id = f"{subset}"
|
||||
else:
|
||||
manifest_file_id = f"{subset}-{self.params.manifest_index}"
|
||||
|
||||
manifest_file_path = self.manifest_dir / manifest_file_id
|
||||
with NumpyHdf5Writer(manifest_file_path) as writer:
|
||||
for batch_idx, batch in enumerate(self.load_ori_dl(subset)):
|
||||
(
|
||||
encoder_embedding,
|
||||
num_frames,
|
||||
) = self.teacher_model.extract_embedding(batch)
|
||||
codebook_indexes = self.quantizer.encode(encoder_embedding)
|
||||
# [N, T, C]
|
||||
codebook_indexes = codebook_indexes.to("cpu").numpy()
|
||||
assert np.min(codebook_indexes) >= 0
|
||||
assert np.max(codebook_indexes) < 256
|
||||
supervisions = batch["supervisions"]
|
||||
cut_list = supervisions["cut"]
|
||||
assert len(cut_list) == codebook_indexes.shape[0]
|
||||
assert all(c.start == 0 for c in supervisions["cut"])
|
||||
|
||||
for idx, cut in enumerate(cut_list):
|
||||
cut.codebook_indexes = writer.store_array(
|
||||
key=cut.id,
|
||||
value=codebook_indexes[idx][: num_frames[idx]],
|
||||
frame_shift=0.02,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
cuts += cut_list
|
||||
num_cuts += len(cut_list)
|
||||
message = f"Processed {num_cuts} cuts from {subset}"
|
||||
if self.params.world_size > 1:
|
||||
message += f" by job {self.params.manifest_index}"
|
||||
logging.info(f"{message}.")
|
||||
|
||||
json_file_path = (
|
||||
self.manifest_dir
|
||||
/ f"with_codebook_indexes-cuts_train-{manifest_file_id}.json.gz"
|
||||
)
|
||||
CutSet.from_cuts(cuts).to_json(json_file_path)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def compute_codebook_indexes_parallel(
|
||||
rank: int,
|
||||
params,
|
||||
) -> List[Tuple[str, List[int]]]:
|
||||
"""Create an extractor for each rank and extract codebook indexes parallelly.
|
||||
|
||||
Normally, this function is called by torch.multiprocessing
|
||||
when multi GPUs are available.
|
||||
"""
|
||||
params = copy.deepcopy(params)
|
||||
device = torch.device("cuda", rank)
|
||||
params.device = device
|
||||
|
||||
# rank is 0-based while split manifests by "lhotse split" is 1-based.
|
||||
params.manifest_index = rank + 1
|
||||
|
||||
extractor = CodebookIndexExtractor(params=params)
|
||||
extractor.extract_codebook_indexes_imp()
|
@ -25,7 +25,7 @@ from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
@ -34,7 +34,10 @@ from lhotse.dataset import (
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
@ -150,6 +153,12 @@ class LibriSpeechAsrDataModule:
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
@ -192,6 +201,13 @@ class LibriSpeechAsrDataModule:
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
@ -263,6 +279,7 @@ class LibriSpeechAsrDataModule:
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
@ -296,7 +313,7 @@ class LibriSpeechAsrDataModule:
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
@ -371,7 +388,7 @@ class LibriSpeechAsrDataModule:
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
|
@ -127,7 +127,11 @@ def setup_logger(
|
||||
level = logging.CRITICAL
|
||||
|
||||
logging.basicConfig(
|
||||
filename=log_filename, format=formatter, level=level, filemode="w"
|
||||
filename=log_filename,
|
||||
format=formatter,
|
||||
level=level,
|
||||
filemode="w",
|
||||
force=True,
|
||||
)
|
||||
if use_console:
|
||||
console = logging.StreamHandler()
|
||||
|
Loading…
x
Reference in New Issue
Block a user