Use new APIs with k2.RaggedTensor (#38)

* Use new APIs with k2.RaggedTensor

* Fix style issues.

* Update the installation doc, saying it requires at least k2 v1.7

* Use k2 v1.7
This commit is contained in:
Fangjun Kuang 2021-09-08 14:55:30 +08:00 committed by GitHub
parent 331e5eb7ab
commit abadc71415
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
26 changed files with 197 additions and 147 deletions

View File

@ -56,7 +56,7 @@ jobs:
run: |
python3 -m pip install --upgrade pip black flake8
python3 -m pip install -U pip
python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
python3 -m pip install k2==1.7.dev20210908+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
python3 -m pip install torchaudio==0.7.2
python3 -m pip install git+https://github.com/lhotse-speech/lhotse

View File

@ -32,7 +32,8 @@ jobs:
os: [ubuntu-18.04, macos-10.15]
python-version: [3.6, 3.7, 3.8, 3.9]
torch: ["1.8.1"]
k2-version: ["1.4.dev20210822"]
k2-version: ["1.7.dev20210908"]
fail-fast: false
steps:

2
.gitignore vendored
View File

@ -4,4 +4,4 @@ path.sh
exp
exp*/
*.pt
download/
download

View File

@ -16,7 +16,6 @@
import sphinx_rtd_theme
# -- Project information -----------------------------------------------------
project = "icefall"

View File

@ -1 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="122" height="20" role="img" aria-label="device: CPU | CUDA"><title>device: CPU | CUDA</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="122" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="45" height="20" fill="#555"/><rect x="45" width="77" height="20" fill="#fe7d37"/><rect width="122" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="235" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="350">device</text><text x="235" y="140" transform="scale(.1)" fill="#fff" textLength="350">device</text><text aria-hidden="true" x="825" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="670">CPU | CUDA</text><text x="825" y="140" transform="scale(.1)" fill="#fff" textLength="670">CPU | CUDA</text></g></svg>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="122" height="20" role="img" aria-label="device: CPU | CUDA"><title>device: CPU | CUDA</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="122" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="45" height="20" fill="#555"/><rect x="45" width="77" height="20" fill="#fe7d37"/><rect width="122" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="235" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="350">device</text><text x="235" y="140" transform="scale(.1)" fill="#fff" textLength="350">device</text><text aria-hidden="true" x="825" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="670">CPU | CUDA</text><text x="825" y="140" transform="scale(.1)" fill="#fff" textLength="670">CPU | CUDA</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.1 KiB

After

Width:  |  Height:  |  Size: 1.1 KiB

View File

@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="80" height="20" role="img" aria-label="k2: &gt;= v1.7"><title>k2: &gt;= v1.7</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="80" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="57" height="20" fill="blueviolet"/><rect width="80" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">k2</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">k2</text><text aria-hidden="true" x="505" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="470">&gt;= v1.7</text><text x="505" y="140" transform="scale(.1)" fill="#fff" textLength="470">&gt;= v1.7</text></g></svg>

After

Width:  |  Height:  |  Size: 1.1 KiB

View File

@ -1 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="114" height="20" role="img" aria-label="os: Linux | macOS"><title>os: Linux | macOS</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="114" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="91" height="20" fill="#ff69b4"/><rect width="114" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">os</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">os</text><text aria-hidden="true" x="675" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="810">Linux | macOS</text><text x="675" y="140" transform="scale(.1)" fill="#fff" textLength="810">Linux | macOS</text></g></svg>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="114" height="20" role="img" aria-label="os: Linux | macOS"><title>os: Linux | macOS</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="114" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="91" height="20" fill="#ff69b4"/><rect width="114" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">os</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">os</text><text aria-hidden="true" x="675" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="810">Linux | macOS</text><text x="675" y="140" transform="scale(.1)" fill="#fff" textLength="810">Linux | macOS</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.1 KiB

After

Width:  |  Height:  |  Size: 1.1 KiB

View File

@ -1 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="170" height="20" role="img" aria-label="python: 3.6 | 3.7 | 3.8 | 3.9"><title>python: 3.6 | 3.7 | 3.8 | 3.9</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="170" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="49" height="20" fill="#555"/><rect x="49" width="121" height="20" fill="#007ec6"/><rect width="170" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="255" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="390">python</text><text x="255" y="140" transform="scale(.1)" fill="#fff" textLength="390">python</text><text aria-hidden="true" x="1085" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text><text x="1085" y="140" transform="scale(.1)" fill="#fff" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text></g></svg>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="170" height="20" role="img" aria-label="python: 3.6 | 3.7 | 3.8 | 3.9"><title>python: 3.6 | 3.7 | 3.8 | 3.9</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="170" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="49" height="20" fill="#555"/><rect x="49" width="121" height="20" fill="#007ec6"/><rect width="170" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="255" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="390">python</text><text x="255" y="140" transform="scale(.1)" fill="#fff" textLength="390">python</text><text aria-hidden="true" x="1085" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text><text x="1085" y="140" transform="scale(.1)" fill="#fff" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@ -1 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="286" height="20" role="img" aria-label="torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0"><title>torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="286" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="39" height="20" fill="#555"/><rect x="39" width="247" height="20" fill="#97ca00"/><rect width="286" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="205" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="290">torch</text><text x="205" y="140" transform="scale(.1)" fill="#fff" textLength="290">torch</text><text aria-hidden="true" x="1615" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text><text x="1615" y="140" transform="scale(.1)" fill="#fff" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text></g></svg>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="286" height="20" role="img" aria-label="torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0"><title>torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="286" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="39" height="20" fill="#555"/><rect x="39" width="247" height="20" fill="#97ca00"/><rect width="286" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="205" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="290">torch</text><text x="205" y="140" transform="scale(.1)" fill="#fff" textLength="290">torch</text><text aria-hidden="true" x="1615" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text><text x="1615" y="140" transform="scale(.1)" fill="#fff" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

@ -7,6 +7,7 @@ Installation
- |device|
- |python_versions|
- |torch_versions|
- |k2_versions|
.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg
:alt: Supported operating systems
@ -20,7 +21,10 @@ Installation
.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
:alt: Supported PyTorch versions
icefall depends on `k2 <https://github.com/k2-fsa/k2>`_ and
.. |k2_versions| image:: ./images/k2-v-1.7.svg
:alt: Supported k2 versions
``icefall`` depends on `k2 <https://github.com/k2-fsa/k2>`_ and
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
We recommend you to install ``k2`` first, as ``k2`` is bound to
@ -32,12 +36,16 @@ installs its dependency PyTorch, which can be reused by ``lhotse``.
--------------
Please refer to `<https://k2.readthedocs.io/en/latest/installation/index.html>`_
to install `k2`.
to install ``k2``.
.. CAUTION::
You need to install ``k2`` with a version at least **v1.7**.
.. HINT::
If you have already installed PyTorch and don't want to replace it,
please install a version of k2 that is compiled against the version
please install a version of ``k2`` that is compiled against the version
of PyTorch you are using.
(2) Install lhotse
@ -50,10 +58,15 @@ to install ``lhotse``.
Install ``lhotse`` also installs its dependency `torchaudio <https://github.com/pytorch/audio>`_.
.. CAUTION::
If you have installed ``torchaudio``, please consider uninstalling it before
installing ``lhotse``. Otherwise, it may update your already installed PyTorch.
(3) Download icefall
--------------------
icefall is a collection of Python scripts, so you don't need to install it
``icefall`` is a collection of Python scripts, so you don't need to install it
and we don't provide a ``setup.py`` to install it.
What you need is to download it and set the environment variable ``PYTHONPATH``
@ -367,7 +380,7 @@ Now let us run the training part:
.. CAUTION::
We use ``export CUDA_VISIBLE_DEVICES=""`` so that icefall uses CPU
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
even if there are GPUs available.
The training log is given below:

View File

@ -15,4 +15,3 @@ We may add recipes for other tasks as well in the future.
yesno
librispeech

View File

@ -209,7 +209,7 @@ After downloading, you will have the following files:
|-- 1221-135766-0001.flac
|-- 1221-135766-0002.flac
`-- trans.txt
6 directories, 10 files
@ -256,14 +256,14 @@ The output is:
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
@ -297,14 +297,14 @@ The decoding output is:
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done

View File

@ -43,4 +43,3 @@ We searched the lm_score_scale for best results, the scales that produced the WE
|--|--|
|test-clean|0.8|
|test-other|0.9|

View File

@ -45,6 +45,7 @@ from icefall.utils import (
get_texts,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
@ -116,6 +117,17 @@ def get_parser():
""",
)
parser.add_argument(
"--export",
type=str2bool,
default=False,
help="""When enabled, the averaged model is saved to
conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
pretrained.pt contains a dict {"model": model.state_dict()},
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
""",
)
return parser
@ -541,6 +553,13 @@ def main():
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
if params.export:
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
torch.save(
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
)
return
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])

View File

@ -16,9 +16,8 @@
# limitations under the License.
from subsampling import Conv2dSubsampling
from subsampling import VggSubsampling
import torch
from subsampling import Conv2dSubsampling, VggSubsampling
def test_conv2d_subsampling():

View File

@ -17,17 +17,16 @@
import torch
from torch.nn.utils.rnn import pad_sequence
from transformer import (
Transformer,
add_eos,
add_sos,
decoder_padding_mask,
encoder_padding_mask,
generate_square_subsequent_mask,
decoder_padding_mask,
add_sos,
add_eos,
)
from torch.nn.utils.rnn import pad_sequence
def test_encoder_padding_mask():
supervisions = {

View File

@ -102,14 +102,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
LG.labels[LG.labels >= first_token_disambig_id] = 0
assert isinstance(LG.aux_labels, k2.RaggedInt)
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
assert isinstance(LG.aux_labels, k2.RaggedTensor)
LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)

View File

@ -99,8 +99,10 @@ def get_params() -> AttributeDict:
# - nbest-rescoring
# - whole-lattice-rescoring
"method": "whole-lattice-rescoring",
# "method": "1best",
# "method": "nbest",
# num_paths is used when method is "nbest" and "nbest-rescoring"
"num_paths": 30,
"num_paths": 100,
}
)
return params
@ -424,6 +426,7 @@ def main():
torch.save(
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
)
return
model.to(device)
model.eval()

0
egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py Normal file → Executable file
View File

View File

@ -80,14 +80,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
LG.labels[LG.labels >= first_token_disambig_id] = 0
assert isinstance(LG.aux_labels, k2.RaggedInt)
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
assert isinstance(LG.aux_labels, k2.RaggedTensor)
LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)

View File

@ -296,6 +296,7 @@ def main():
torch.save(
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
)
return
model.to(device)
model.eval()

View File

@ -84,8 +84,8 @@ def _intersect_device(
for start, end in splits:
indexes = torch.arange(start, end).to(b_to_a_map)
fsas = k2.index(b_fsas, indexes)
b_to_a = k2.index(b_to_a_map, indexes)
fsas = k2.index_fsa(b_fsas, indexes)
b_to_a = k2.index_select(b_to_a_map, indexes)
path_lattice = k2.intersect_device(
a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a
)
@ -215,18 +215,16 @@ def nbest_decoding(
scale=scale,
)
# word_seq is a k2.RaggedInt sharing the same shape as `path`
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
word_seq = k2.index(lattice.aux_labels, path)
# Note: the above operation supports also the case when
# lattice.aux_labels is a ragged tensor. In that case,
# `remove_axis=True` is used inside the pybind11 binding code,
# so the resulting `word_seq` still has 3 axes, like `path`.
# The 3 axes are [seq][path][word_id]
if isinstance(lattice.aux_labels, torch.Tensor):
word_seq = k2.ragged.index(lattice.aux_labels, path)
else:
word_seq = lattice.aux_labels.index(path, remove_axis=True)
# Remove 0 (epsilon) and -1 from word_seq
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
word_seq = word_seq.remove_values_leq(0)
# Remove sequences with identical word sequences.
#
@ -234,12 +232,12 @@ def nbest_decoding(
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
# new2old.numel() == unique_word_seqs.tot_size(1)
unique_word_seq, _, new2old = k2.ragged.unique_sequences(
word_seq, need_num_repeats=False, need_new2old_indexes=True
unique_word_seq, _, new2old = word_seq.unique(
need_num_repeats=False, need_new2old_indexes=True
)
# Note: unique_word_seq still has the same axes as word_seq
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
seq_to_path_shape = unique_word_seq.shape.get_layer(0)
# path_to_seq_map is a 1-D torch.Tensor.
# path_to_seq_map[i] is the seq to which the i-th path belongs
@ -247,7 +245,7 @@ def nbest_decoding(
# Remove the seq axis.
# Now unique_word_seq has only two axes [path][word]
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
unique_word_seq = unique_word_seq.remove_axis(0)
# word_fsa is an FsaVec with axes [path][state][arc]
word_fsa = k2.linear_fsa(unique_word_seq)
@ -275,35 +273,35 @@ def nbest_decoding(
use_double_scores=use_double_scores, log_semiring=False
)
# RaggedFloat currently supports float32 only.
# If Ragged<double> is wrapped, we can use k2.RaggedDouble here
ragged_tot_scores = k2.RaggedFloat(
seq_to_path_shape, tot_scores.to(torch.float32)
)
ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
argmax_indexes = ragged_tot_scores.argmax()
# Since we invoked `k2.ragged.unique_sequences`, which reorders
# the index from `path`, we use `new2old` here to convert argmax_indexes
# to the indexes into `path`.
#
# Use k2.index here since argmax_indexes' dtype is torch.int32
best_path_indexes = k2.index(new2old, argmax_indexes)
best_path_indexes = k2.index_select(new2old, argmax_indexes)
path_2axes = k2.ragged.remove_axis(path, 0)
path_2axes = path.remove_axis(0)
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
best_path = k2.index(path_2axes, best_path_indexes)
# best_path is a k2.RaggedTensor with 2 axes [path][arc_pos]
best_path, _ = path_2axes.index(
indexes=best_path_indexes, axis=0, need_value_indexes=False
)
# labels is a k2.RaggedInt with 2 axes [path][token_id]
# labels is a k2.RaggedTensor with 2 axes [path][token_id]
# Note that it contains -1s.
labels = k2.index(lattice.labels.contiguous(), best_path)
labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
labels = k2.ragged.remove_values_eq(labels, -1)
labels = labels.remove_values_eq(-1)
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
# aux_labels is also a k2.RaggedInt with 2 axes
aux_labels = k2.index(lattice.aux_labels, best_path.values())
# lattice.aux_labels is a k2.RaggedTensor with 2 axes, so
# aux_labels is also a k2.RaggedTensor with 2 axes
aux_labels, _ = lattice.aux_labels.index(
indexes=best_path.data, axis=0, need_value_indexes=False
)
best_path_fsa = k2.linear_fsa(labels)
best_path_fsa.aux_labels = aux_labels
@ -426,33 +424,36 @@ def rescore_with_n_best_list(
scale=scale,
)
# word_seq is a k2.RaggedInt sharing the same shape as `path`
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
word_seq = k2.index(lattice.aux_labels, path)
if isinstance(lattice.aux_labels, torch.Tensor):
word_seq = k2.ragged.index(lattice.aux_labels, path)
else:
word_seq = lattice.aux_labels.index(path, remove_axis=True)
# Remove epsilons and -1 from word_seq
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
word_seq = word_seq.remove_values_leq(0)
# Remove paths that has identical word sequences.
#
# unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
# unique_word_seq is still a k2.RaggedTensor with 3 axes [seq][path][word]
# except that there are no repeated paths with the same word_seq
# within a sequence.
#
# num_repeats is also a k2.RaggedInt with 2 axes containing the
# num_repeats is also a k2.RaggedTensor with 2 axes containing the
# multiplicities of each path.
# num_repeats.num_elements() == unique_word_seqs.tot_size(1)
# num_repeats.numel() == unique_word_seqs.tot_size(1)
#
# Since k2.ragged.unique_sequences will reorder paths within a seq,
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
# new2old.numel() == unique_word_seqs.tot_size(1)
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
word_seq, need_num_repeats=True, need_new2old_indexes=True
unique_word_seq, num_repeats, new2old = word_seq.unique(
need_num_repeats=True, need_new2old_indexes=True
)
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
seq_to_path_shape = unique_word_seq.shape.get_layer(0)
# path_to_seq_map is a 1-D torch.Tensor.
# path_to_seq_map[i] is the seq to which the i-th path
@ -461,7 +462,7 @@ def rescore_with_n_best_list(
# Remove the seq axis.
# Now unique_word_seq has only two axes [path][word]
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
unique_word_seq = unique_word_seq.remove_axis(0)
# word_fsa is an FsaVec with axes [path][state][arc]
word_fsa = k2.linear_fsa(unique_word_seq)
@ -485,39 +486,42 @@ def rescore_with_n_best_list(
use_double_scores=True, log_semiring=False
)
path_2axes = k2.ragged.remove_axis(path, 0)
path_2axes = path.remove_axis(0)
ans = dict()
for lm_scale in lm_scale_list:
tot_scores = am_scores / lm_scale + lm_scores
# Remember that we used `k2.ragged.unique_sequences` to remove repeated
# Remember that we used `k2.RaggedTensor.unique` to remove repeated
# paths to avoid redundant computation in `k2.intersect_device`.
# Now we use `num_repeats` to correct the scores for each path.
#
# NOTE(fangjun): It is commented out as it leads to a worse WER
# tot_scores = tot_scores * num_repeats.values()
ragged_tot_scores = k2.RaggedFloat(
seq_to_path_shape, tot_scores.to(torch.float32)
)
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
argmax_indexes = ragged_tot_scores.argmax()
# Use k2.index here since argmax_indexes' dtype is torch.int32
best_path_indexes = k2.index(new2old, argmax_indexes)
best_path_indexes = k2.index_select(new2old, argmax_indexes)
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
best_path = k2.index(path_2axes, best_path_indexes)
best_path, _ = path_2axes.index(
indexes=best_path_indexes, axis=0, need_value_indexes=False
)
# labels is a k2.RaggedInt with 2 axes [path][phone_id]
# labels is a k2.RaggedTensor with 2 axes [path][phone_id]
# Note that it contains -1s.
labels = k2.index(lattice.labels.contiguous(), best_path)
labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
labels = k2.ragged.remove_values_eq(labels, -1)
labels = labels.remove_values_eq(-1)
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
# aux_labels is also a k2.RaggedInt with 2 axes
aux_labels = k2.index(lattice.aux_labels, best_path.values())
# lattice.aux_labels is a k2.RaggedTensor tensor with 2 axes, so
# aux_labels is also a k2.RaggedTensor with 2 axes
aux_labels, _ = lattice.aux_labels.index(
indexes=best_path.data, axis=0, need_value_indexes=False
)
best_path_fsa = k2.linear_fsa(labels)
best_path_fsa.aux_labels = aux_labels
@ -659,12 +663,16 @@ def nbest_oracle(
scale=scale,
)
word_seq = k2.index(lattice.aux_labels, path)
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
unique_word_seq, _, _ = k2.ragged.unique_sequences(
word_seq, need_num_repeats=False, need_new2old_indexes=False
if isinstance(lattice.aux_labels, torch.Tensor):
word_seq = k2.ragged.index(lattice.aux_labels, path)
else:
word_seq = lattice.aux_labels.index(path, remove_axis=True)
word_seq = word_seq.remove_values_leq(0)
unique_word_seq, _, _ = word_seq.unique(
need_num_repeats=False, need_new2old_indexes=False
)
unique_word_ids = k2.ragged.to_list(unique_word_seq)
unique_word_ids = unique_word_seq.tolist()
assert len(unique_word_ids) == len(ref_texts)
# unique_word_ids[i] contains all hypotheses of the i-th utterance
@ -743,33 +751,36 @@ def rescore_with_attention_decoder(
scale=scale,
)
# word_seq is a k2.RaggedInt sharing the same shape as `path`
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
word_seq = k2.index(lattice.aux_labels, path)
if isinstance(lattice.aux_labels, torch.Tensor):
word_seq = k2.ragged.index(lattice.aux_labels, path)
else:
word_seq = lattice.aux_labels.index(path, remove_axis=True)
# Remove epsilons and -1 from word_seq
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
word_seq = word_seq.remove_values_leq(0)
# Remove paths that has identical word sequences.
#
# unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
# unique_word_seq is still a k2.RaggedTensor with 3 axes [seq][path][word]
# except that there are no repeated paths with the same word_seq
# within a sequence.
#
# num_repeats is also a k2.RaggedInt with 2 axes containing the
# num_repeats is also a k2.RaggedTensor with 2 axes containing the
# multiplicities of each path.
# num_repeats.num_elements() == unique_word_seqs.tot_size(1)
# num_repeats.numel() == unique_word_seqs.tot_size(1)
#
# Since k2.ragged.unique_sequences will reorder paths within a seq,
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
# new2old.numel() == unique_word_seq.tot_size(1)
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
word_seq, need_num_repeats=True, need_new2old_indexes=True
unique_word_seq, num_repeats, new2old = word_seq.unique(
need_num_repeats=True, need_new2old_indexes=True
)
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
seq_to_path_shape = unique_word_seq.shape.get_layer(0)
# path_to_seq_map is a 1-D torch.Tensor.
# path_to_seq_map[i] is the seq to which the i-th path
@ -778,7 +789,7 @@ def rescore_with_attention_decoder(
# Remove the seq axis.
# Now unique_word_seq has only two axes [path][word]
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
unique_word_seq = unique_word_seq.remove_axis(0)
# word_fsa is an FsaVec with axes [path][state][arc]
word_fsa = k2.linear_fsa(unique_word_seq)
@ -796,20 +807,23 @@ def rescore_with_attention_decoder(
# CAUTION: The "tokens" attribute is set in the file
# local/compile_hlg.py
token_seq = k2.index(lattice.tokens, path)
if isinstance(lattice.tokens, torch.Tensor):
token_seq = k2.ragged.index(lattice.tokens, path)
else:
token_seq = lattice.tokens.index(path, remove_axis=True)
# Remove epsilons and -1 from token_seq
token_seq = k2.ragged.remove_values_leq(token_seq, 0)
token_seq = token_seq.remove_values_leq(0)
# Remove the seq axis.
token_seq = k2.ragged.remove_axis(token_seq, 0)
token_seq = token_seq.remove_axis(0)
token_seq, _ = k2.ragged.index(
token_seq, indexes=new2old, axis=0, need_value_indexes=False
token_seq, _ = token_seq.index(
indexes=new2old, axis=0, need_value_indexes=False
)
# Now word in unique_word_seq has its corresponding token IDs.
token_ids = k2.ragged.to_list(token_seq)
token_ids = token_seq.tolist()
num_word_seqs = new2old.numel()
@ -849,7 +863,7 @@ def rescore_with_attention_decoder(
else:
attention_scale_list = [attention_scale]
path_2axes = k2.ragged.remove_axis(path, 0)
path_2axes = path.remove_axis(0)
ans = dict()
for n_scale in ngram_lm_scale_list:
@ -859,23 +873,28 @@ def rescore_with_attention_decoder(
+ n_scale * ngram_lm_scores
+ a_scale * attention_scores
)
ragged_tot_scores = k2.RaggedFloat(seq_to_path_shape, tot_scores)
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
argmax_indexes = ragged_tot_scores.argmax()
best_path_indexes = k2.index(new2old, argmax_indexes)
best_path_indexes = k2.index_select(new2old, argmax_indexes)
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
best_path = k2.index(path_2axes, best_path_indexes)
best_path, _ = path_2axes.index(
indexes=best_path_indexes, axis=0, need_value_indexes=False
)
# labels is a k2.RaggedInt with 2 axes [path][token_id]
# labels is a k2.RaggedTensor with 2 axes [path][token_id]
# Note that it contains -1s.
labels = k2.index(lattice.labels.contiguous(), best_path)
labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
labels = k2.ragged.remove_values_eq(labels, -1)
labels = labels.remove_values_eq(-1)
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
# aux_labels is also a k2.RaggedInt with 2 axes
aux_labels = k2.index(lattice.aux_labels, best_path.values())
if isinstance(lattice.aux_labels, torch.Tensor):
aux_labels = k2.index_select(lattice.aux_labels, best_path.data)
else:
aux_labels, _ = lattice.aux_labels.index(
indexes=best_path.data, axis=0, need_value_indexes=False
)
best_path_fsa = k2.linear_fsa(labels)
best_path_fsa.aux_labels = aux_labels

View File

@ -157,7 +157,7 @@ class BpeLexicon(Lexicon):
lang_dir / "lexicon.txt"
)
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt:
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedTensor:
"""Read a BPE lexicon from file and convert it to a
k2 ragged tensor.
@ -200,19 +200,18 @@ class BpeLexicon(Lexicon):
)
values = torch.tensor(token_ids, dtype=torch.int32)
return k2.RaggedInt(shape, values)
return k2.RaggedTensor(shape, values)
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt:
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedTensor:
"""Convert a list of words to a ragged tensor contained
word piece IDs.
"""
word_ids = [self.word_table[w] for w in words]
word_ids = torch.tensor(word_ids, dtype=torch.int32)
ragged, _ = k2.ragged.index(
self.ragged_lexicon,
ragged, _ = self.ragged_lexicon.index(
indexes=word_ids,
need_value_indexes=False,
axis=0,
need_value_indexes=False,
)
return ragged

View File

@ -26,7 +26,6 @@ from pathlib import Path
from typing import Dict, Iterable, List, TextIO, Tuple, Union
import k2
import k2.ragged as k2r
import kaldialign
import torch
import torch.distributed as dist
@ -199,26 +198,25 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
Returns a list of lists of int, containing the label sequences we
decoded.
"""
if isinstance(best_paths.aux_labels, k2.RaggedInt):
if isinstance(best_paths.aux_labels, k2.RaggedTensor):
# remove 0's and -1's.
aux_labels = k2r.remove_values_leq(best_paths.aux_labels, 0)
aux_shape = k2r.compose_ragged_shapes(
best_paths.arcs.shape(), aux_labels.shape()
)
aux_labels = best_paths.aux_labels.remove_values_leq(0)
# TODO: change arcs.shape() to arcs.shape
aux_shape = best_paths.arcs.shape().compose(aux_labels.shape)
# remove the states and arcs axes.
aux_shape = k2r.remove_axis(aux_shape, 1)
aux_shape = k2r.remove_axis(aux_shape, 1)
aux_labels = k2.RaggedInt(aux_shape, aux_labels.values())
aux_shape = aux_shape.remove_axis(1)
aux_shape = aux_shape.remove_axis(1)
aux_labels = k2.RaggedTensor(aux_shape, aux_labels.data)
else:
# remove axis corresponding to states.
aux_shape = k2r.remove_axis(best_paths.arcs.shape(), 1)
aux_labels = k2.RaggedInt(aux_shape, best_paths.aux_labels)
aux_shape = best_paths.arcs.shape().remove_axis(1)
aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
# remove 0's and -1's.
aux_labels = k2r.remove_values_leq(aux_labels, 0)
aux_labels = aux_labels.remove_values_leq(0)
assert aux_labels.num_axes() == 2
return k2r.to_list(aux_labels)
assert aux_labels.num_axes == 2
return aux_labels.tolist()
def store_transcripts(

View File

@ -16,9 +16,10 @@
# limitations under the License.
from pathlib import Path
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.lexicon import BpeLexicon
from pathlib import Path
def test():

View File

@ -60,7 +60,7 @@ def test_get_texts_ragged():
4
"""
)
fsa1.aux_labels = k2.RaggedInt("[ [1 3 0 2] [] [4 0 1] [-1]]")
fsa1.aux_labels = k2.RaggedTensor("[ [1 3 0 2] [] [4 0 1] [-1]]")
fsa2 = k2.Fsa.from_str(
"""
@ -70,7 +70,7 @@ def test_get_texts_ragged():
3
"""
)
fsa2.aux_labels = k2.RaggedInt("[[3 0 5 0 8] [0 9 7 0] [-1]]")
fsa2.aux_labels = k2.RaggedTensor("[[3 0 5 0 8] [0 9 7 0] [-1]]")
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
texts = get_texts(fsas)
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]