diff --git a/.github/workflows/run-yesno-recipe.yml b/.github/workflows/run-yesno-recipe.yml
index 39a6a0e80..b4e266672 100644
--- a/.github/workflows/run-yesno-recipe.yml
+++ b/.github/workflows/run-yesno-recipe.yml
@@ -56,7 +56,7 @@ jobs:
run: |
python3 -m pip install --upgrade pip black flake8
python3 -m pip install -U pip
- python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
+ python3 -m pip install k2==1.7.dev20210908+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
python3 -m pip install torchaudio==0.7.2
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml
index 9110e7db4..c853e3de1 100644
--- a/.github/workflows/test.yml
+++ b/.github/workflows/test.yml
@@ -32,7 +32,8 @@ jobs:
os: [ubuntu-18.04, macos-10.15]
python-version: [3.6, 3.7, 3.8, 3.9]
torch: ["1.8.1"]
- k2-version: ["1.4.dev20210822"]
+ k2-version: ["1.7.dev20210908"]
+
fail-fast: false
steps:
diff --git a/.gitignore b/.gitignore
index 839a1c34a..e6c84ca5e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -4,4 +4,4 @@ path.sh
exp
exp*/
*.pt
-download/
+download
diff --git a/docs/source/conf.py b/docs/source/conf.py
index f97f72d54..599df8b3e 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -16,7 +16,6 @@
import sphinx_rtd_theme
-
# -- Project information -----------------------------------------------------
project = "icefall"
diff --git a/docs/source/installation/images/device-CPU_CUDA-orange.svg b/docs/source/installation/images/device-CPU_CUDA-orange.svg
index b760102e3..a023a1283 100644
--- a/docs/source/installation/images/device-CPU_CUDA-orange.svg
+++ b/docs/source/installation/images/device-CPU_CUDA-orange.svg
@@ -1 +1 @@
-
\ No newline at end of file
+
diff --git a/docs/source/installation/images/k2-v-1.7.svg b/docs/source/installation/images/k2-v-1.7.svg
new file mode 100644
index 000000000..8a74d0b55
--- /dev/null
+++ b/docs/source/installation/images/k2-v-1.7.svg
@@ -0,0 +1 @@
+
diff --git a/docs/source/installation/images/os-Linux_macOS-ff69b4.svg b/docs/source/installation/images/os-Linux_macOS-ff69b4.svg
index 44c112747..178813ed4 100644
--- a/docs/source/installation/images/os-Linux_macOS-ff69b4.svg
+++ b/docs/source/installation/images/os-Linux_macOS-ff69b4.svg
@@ -1 +1 @@
-
\ No newline at end of file
+
diff --git a/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg b/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg
index 676feba2c..befc1e19e 100644
--- a/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg
+++ b/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg
@@ -1 +1 @@
-
\ No newline at end of file
+
diff --git a/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg b/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
index d9b0efe1a..496e5a9ef 100644
--- a/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
+++ b/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
@@ -1 +1 @@
-
\ No newline at end of file
+
diff --git a/docs/source/installation/index.rst b/docs/source/installation/index.rst
index bcef669c8..c11cbd1be 100644
--- a/docs/source/installation/index.rst
+++ b/docs/source/installation/index.rst
@@ -7,6 +7,7 @@ Installation
- |device|
- |python_versions|
- |torch_versions|
+- |k2_versions|
.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg
:alt: Supported operating systems
@@ -20,7 +21,10 @@ Installation
.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
:alt: Supported PyTorch versions
-icefall depends on `k2 `_ and
+.. |k2_versions| image:: ./images/k2-v-1.7.svg
+ :alt: Supported k2 versions
+
+``icefall`` depends on `k2 `_ and
`lhotse `_.
We recommend you to install ``k2`` first, as ``k2`` is bound to
@@ -32,12 +36,16 @@ installs its dependency PyTorch, which can be reused by ``lhotse``.
--------------
Please refer to ``_
-to install `k2`.
+to install ``k2``.
+
+.. CAUTION::
+
+ You need to install ``k2`` with a version at least **v1.7**.
.. HINT::
If you have already installed PyTorch and don't want to replace it,
- please install a version of k2 that is compiled against the version
+ please install a version of ``k2`` that is compiled against the version
of PyTorch you are using.
(2) Install lhotse
@@ -50,10 +58,15 @@ to install ``lhotse``.
Install ``lhotse`` also installs its dependency `torchaudio `_.
+.. CAUTION::
+
+ If you have installed ``torchaudio``, please consider uninstalling it before
+ installing ``lhotse``. Otherwise, it may update your already installed PyTorch.
+
(3) Download icefall
--------------------
-icefall is a collection of Python scripts, so you don't need to install it
+``icefall`` is a collection of Python scripts, so you don't need to install it
and we don't provide a ``setup.py`` to install it.
What you need is to download it and set the environment variable ``PYTHONPATH``
@@ -367,7 +380,7 @@ Now let us run the training part:
.. CAUTION::
- We use ``export CUDA_VISIBLE_DEVICES=""`` so that icefall uses CPU
+ We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
even if there are GPUs available.
The training log is given below:
diff --git a/docs/source/recipes/index.rst b/docs/source/recipes/index.rst
index db34fdca5..36f8dfc39 100644
--- a/docs/source/recipes/index.rst
+++ b/docs/source/recipes/index.rst
@@ -15,4 +15,3 @@ We may add recipes for other tasks as well in the future.
yesno
librispeech
-
diff --git a/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst b/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst
index a59f34db7..64f0a6a08 100644
--- a/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst
+++ b/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst
@@ -209,7 +209,7 @@ After downloading, you will have the following files:
|-- 1221-135766-0001.flac
|-- 1221-135766-0002.flac
`-- trans.txt
-
+
6 directories, 10 files
@@ -256,14 +256,14 @@ The output is:
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
-
+
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
-
+
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
-
-
+
+
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
@@ -297,14 +297,14 @@ The decoding output is:
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
-
+
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
-
+
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
-
-
+
+
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md
index dfc412672..d4acf9206 100644
--- a/egs/librispeech/ASR/RESULTS.md
+++ b/egs/librispeech/ASR/RESULTS.md
@@ -43,4 +43,3 @@ We searched the lm_score_scale for best results, the scales that produced the WE
|--|--|
|test-clean|0.8|
|test-other|0.9|
-
diff --git a/egs/librispeech/ASR/conformer_ctc/decode.py b/egs/librispeech/ASR/conformer_ctc/decode.py
index ff6374d73..cfdcff756 100755
--- a/egs/librispeech/ASR/conformer_ctc/decode.py
+++ b/egs/librispeech/ASR/conformer_ctc/decode.py
@@ -45,6 +45,7 @@ from icefall.utils import (
get_texts,
setup_logger,
store_transcripts,
+ str2bool,
write_error_stats,
)
@@ -116,6 +117,17 @@ def get_parser():
""",
)
+ parser.add_argument(
+ "--export",
+ type=str2bool,
+ default=False,
+ help="""When enabled, the averaged model is saved to
+ conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
+ pretrained.pt contains a dict {"model": model.state_dict()},
+ which can be loaded by `icefall.checkpoint.load_checkpoint()`.
+ """,
+ )
+
return parser
@@ -541,6 +553,13 @@ def main():
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
+ if params.export:
+ logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
+ torch.save(
+ {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
+ )
+ return
+
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
diff --git a/egs/librispeech/ASR/conformer_ctc/test_subsampling.py b/egs/librispeech/ASR/conformer_ctc/test_subsampling.py
index e3361d0c9..81fa234dd 100755
--- a/egs/librispeech/ASR/conformer_ctc/test_subsampling.py
+++ b/egs/librispeech/ASR/conformer_ctc/test_subsampling.py
@@ -16,9 +16,8 @@
# limitations under the License.
-from subsampling import Conv2dSubsampling
-from subsampling import VggSubsampling
import torch
+from subsampling import Conv2dSubsampling, VggSubsampling
def test_conv2d_subsampling():
diff --git a/egs/librispeech/ASR/conformer_ctc/test_transformer.py b/egs/librispeech/ASR/conformer_ctc/test_transformer.py
index b90215274..667057c51 100644
--- a/egs/librispeech/ASR/conformer_ctc/test_transformer.py
+++ b/egs/librispeech/ASR/conformer_ctc/test_transformer.py
@@ -17,17 +17,16 @@
import torch
+from torch.nn.utils.rnn import pad_sequence
from transformer import (
Transformer,
+ add_eos,
+ add_sos,
+ decoder_padding_mask,
encoder_padding_mask,
generate_square_subsequent_mask,
- decoder_padding_mask,
- add_sos,
- add_eos,
)
-from torch.nn.utils.rnn import pad_sequence
-
def test_encoder_padding_mask():
supervisions = {
diff --git a/egs/librispeech/ASR/local/compile_hlg.py b/egs/librispeech/ASR/local/compile_hlg.py
index 19a1ddd23..407fb7d88 100755
--- a/egs/librispeech/ASR/local/compile_hlg.py
+++ b/egs/librispeech/ASR/local/compile_hlg.py
@@ -102,14 +102,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
LG.labels[LG.labels >= first_token_disambig_id] = 0
- assert isinstance(LG.aux_labels, k2.RaggedInt)
- LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
+ assert isinstance(LG.aux_labels, k2.RaggedTensor)
+ LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
- LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
+ LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
index afdebd12b..87e9cddb4 100755
--- a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
+++ b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py
@@ -99,8 +99,10 @@ def get_params() -> AttributeDict:
# - nbest-rescoring
# - whole-lattice-rescoring
"method": "whole-lattice-rescoring",
+ # "method": "1best",
+ # "method": "nbest",
# num_paths is used when method is "nbest" and "nbest-rescoring"
- "num_paths": 30,
+ "num_paths": 100,
}
)
return params
@@ -424,6 +426,7 @@ def main():
torch.save(
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
)
+ return
model.to(device)
model.eval()
diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py b/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
old mode 100644
new mode 100755
diff --git a/egs/yesno/ASR/local/compile_hlg.py b/egs/yesno/ASR/local/compile_hlg.py
index f2fafd013..41a927455 100755
--- a/egs/yesno/ASR/local/compile_hlg.py
+++ b/egs/yesno/ASR/local/compile_hlg.py
@@ -80,14 +80,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
LG.labels[LG.labels >= first_token_disambig_id] = 0
- assert isinstance(LG.aux_labels, k2.RaggedInt)
- LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
+ assert isinstance(LG.aux_labels, k2.RaggedTensor)
+ LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
- LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
+ LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
diff --git a/egs/yesno/ASR/tdnn/decode.py b/egs/yesno/ASR/tdnn/decode.py
index aa7b07b98..54fdbb3cc 100755
--- a/egs/yesno/ASR/tdnn/decode.py
+++ b/egs/yesno/ASR/tdnn/decode.py
@@ -296,6 +296,7 @@ def main():
torch.save(
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
)
+ return
model.to(device)
model.eval()
diff --git a/icefall/decode.py b/icefall/decode.py
index de3219401..3f6e5fc84 100644
--- a/icefall/decode.py
+++ b/icefall/decode.py
@@ -84,8 +84,8 @@ def _intersect_device(
for start, end in splits:
indexes = torch.arange(start, end).to(b_to_a_map)
- fsas = k2.index(b_fsas, indexes)
- b_to_a = k2.index(b_to_a_map, indexes)
+ fsas = k2.index_fsa(b_fsas, indexes)
+ b_to_a = k2.index_select(b_to_a_map, indexes)
path_lattice = k2.intersect_device(
a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a
)
@@ -215,18 +215,16 @@ def nbest_decoding(
scale=scale,
)
- # word_seq is a k2.RaggedInt sharing the same shape as `path`
+ # word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
- word_seq = k2.index(lattice.aux_labels, path)
- # Note: the above operation supports also the case when
- # lattice.aux_labels is a ragged tensor. In that case,
- # `remove_axis=True` is used inside the pybind11 binding code,
- # so the resulting `word_seq` still has 3 axes, like `path`.
- # The 3 axes are [seq][path][word_id]
+ if isinstance(lattice.aux_labels, torch.Tensor):
+ word_seq = k2.ragged.index(lattice.aux_labels, path)
+ else:
+ word_seq = lattice.aux_labels.index(path, remove_axis=True)
# Remove 0 (epsilon) and -1 from word_seq
- word_seq = k2.ragged.remove_values_leq(word_seq, 0)
+ word_seq = word_seq.remove_values_leq(0)
# Remove sequences with identical word sequences.
#
@@ -234,12 +232,12 @@ def nbest_decoding(
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
# new2old.numel() == unique_word_seqs.tot_size(1)
- unique_word_seq, _, new2old = k2.ragged.unique_sequences(
- word_seq, need_num_repeats=False, need_new2old_indexes=True
+ unique_word_seq, _, new2old = word_seq.unique(
+ need_num_repeats=False, need_new2old_indexes=True
)
# Note: unique_word_seq still has the same axes as word_seq
- seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
+ seq_to_path_shape = unique_word_seq.shape.get_layer(0)
# path_to_seq_map is a 1-D torch.Tensor.
# path_to_seq_map[i] is the seq to which the i-th path belongs
@@ -247,7 +245,7 @@ def nbest_decoding(
# Remove the seq axis.
# Now unique_word_seq has only two axes [path][word]
- unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
+ unique_word_seq = unique_word_seq.remove_axis(0)
# word_fsa is an FsaVec with axes [path][state][arc]
word_fsa = k2.linear_fsa(unique_word_seq)
@@ -275,35 +273,35 @@ def nbest_decoding(
use_double_scores=use_double_scores, log_semiring=False
)
- # RaggedFloat currently supports float32 only.
- # If Ragged is wrapped, we can use k2.RaggedDouble here
- ragged_tot_scores = k2.RaggedFloat(
- seq_to_path_shape, tot_scores.to(torch.float32)
- )
+ ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
- argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
+ argmax_indexes = ragged_tot_scores.argmax()
# Since we invoked `k2.ragged.unique_sequences`, which reorders
# the index from `path`, we use `new2old` here to convert argmax_indexes
# to the indexes into `path`.
#
# Use k2.index here since argmax_indexes' dtype is torch.int32
- best_path_indexes = k2.index(new2old, argmax_indexes)
+ best_path_indexes = k2.index_select(new2old, argmax_indexes)
- path_2axes = k2.ragged.remove_axis(path, 0)
+ path_2axes = path.remove_axis(0)
- # best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
- best_path = k2.index(path_2axes, best_path_indexes)
+ # best_path is a k2.RaggedTensor with 2 axes [path][arc_pos]
+ best_path, _ = path_2axes.index(
+ indexes=best_path_indexes, axis=0, need_value_indexes=False
+ )
- # labels is a k2.RaggedInt with 2 axes [path][token_id]
+ # labels is a k2.RaggedTensor with 2 axes [path][token_id]
# Note that it contains -1s.
- labels = k2.index(lattice.labels.contiguous(), best_path)
+ labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
- labels = k2.ragged.remove_values_eq(labels, -1)
+ labels = labels.remove_values_eq(-1)
- # lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
- # aux_labels is also a k2.RaggedInt with 2 axes
- aux_labels = k2.index(lattice.aux_labels, best_path.values())
+ # lattice.aux_labels is a k2.RaggedTensor with 2 axes, so
+ # aux_labels is also a k2.RaggedTensor with 2 axes
+ aux_labels, _ = lattice.aux_labels.index(
+ indexes=best_path.data, axis=0, need_value_indexes=False
+ )
best_path_fsa = k2.linear_fsa(labels)
best_path_fsa.aux_labels = aux_labels
@@ -426,33 +424,36 @@ def rescore_with_n_best_list(
scale=scale,
)
- # word_seq is a k2.RaggedInt sharing the same shape as `path`
+ # word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
- word_seq = k2.index(lattice.aux_labels, path)
+ if isinstance(lattice.aux_labels, torch.Tensor):
+ word_seq = k2.ragged.index(lattice.aux_labels, path)
+ else:
+ word_seq = lattice.aux_labels.index(path, remove_axis=True)
# Remove epsilons and -1 from word_seq
- word_seq = k2.ragged.remove_values_leq(word_seq, 0)
+ word_seq = word_seq.remove_values_leq(0)
# Remove paths that has identical word sequences.
#
- # unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
+ # unique_word_seq is still a k2.RaggedTensor with 3 axes [seq][path][word]
# except that there are no repeated paths with the same word_seq
# within a sequence.
#
- # num_repeats is also a k2.RaggedInt with 2 axes containing the
+ # num_repeats is also a k2.RaggedTensor with 2 axes containing the
# multiplicities of each path.
- # num_repeats.num_elements() == unique_word_seqs.tot_size(1)
+ # num_repeats.numel() == unique_word_seqs.tot_size(1)
#
# Since k2.ragged.unique_sequences will reorder paths within a seq,
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
# new2old.numel() == unique_word_seqs.tot_size(1)
- unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
- word_seq, need_num_repeats=True, need_new2old_indexes=True
+ unique_word_seq, num_repeats, new2old = word_seq.unique(
+ need_num_repeats=True, need_new2old_indexes=True
)
- seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
+ seq_to_path_shape = unique_word_seq.shape.get_layer(0)
# path_to_seq_map is a 1-D torch.Tensor.
# path_to_seq_map[i] is the seq to which the i-th path
@@ -461,7 +462,7 @@ def rescore_with_n_best_list(
# Remove the seq axis.
# Now unique_word_seq has only two axes [path][word]
- unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
+ unique_word_seq = unique_word_seq.remove_axis(0)
# word_fsa is an FsaVec with axes [path][state][arc]
word_fsa = k2.linear_fsa(unique_word_seq)
@@ -485,39 +486,42 @@ def rescore_with_n_best_list(
use_double_scores=True, log_semiring=False
)
- path_2axes = k2.ragged.remove_axis(path, 0)
+ path_2axes = path.remove_axis(0)
ans = dict()
for lm_scale in lm_scale_list:
tot_scores = am_scores / lm_scale + lm_scores
- # Remember that we used `k2.ragged.unique_sequences` to remove repeated
+ # Remember that we used `k2.RaggedTensor.unique` to remove repeated
# paths to avoid redundant computation in `k2.intersect_device`.
# Now we use `num_repeats` to correct the scores for each path.
#
# NOTE(fangjun): It is commented out as it leads to a worse WER
# tot_scores = tot_scores * num_repeats.values()
- ragged_tot_scores = k2.RaggedFloat(
- seq_to_path_shape, tot_scores.to(torch.float32)
- )
- argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
+ ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
+ argmax_indexes = ragged_tot_scores.argmax()
# Use k2.index here since argmax_indexes' dtype is torch.int32
- best_path_indexes = k2.index(new2old, argmax_indexes)
+ best_path_indexes = k2.index_select(new2old, argmax_indexes)
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
- best_path = k2.index(path_2axes, best_path_indexes)
+ best_path, _ = path_2axes.index(
+ indexes=best_path_indexes, axis=0, need_value_indexes=False
+ )
- # labels is a k2.RaggedInt with 2 axes [path][phone_id]
+ # labels is a k2.RaggedTensor with 2 axes [path][phone_id]
# Note that it contains -1s.
- labels = k2.index(lattice.labels.contiguous(), best_path)
+ labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
- labels = k2.ragged.remove_values_eq(labels, -1)
+ labels = labels.remove_values_eq(-1)
- # lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
- # aux_labels is also a k2.RaggedInt with 2 axes
- aux_labels = k2.index(lattice.aux_labels, best_path.values())
+ # lattice.aux_labels is a k2.RaggedTensor tensor with 2 axes, so
+ # aux_labels is also a k2.RaggedTensor with 2 axes
+
+ aux_labels, _ = lattice.aux_labels.index(
+ indexes=best_path.data, axis=0, need_value_indexes=False
+ )
best_path_fsa = k2.linear_fsa(labels)
best_path_fsa.aux_labels = aux_labels
@@ -659,12 +663,16 @@ def nbest_oracle(
scale=scale,
)
- word_seq = k2.index(lattice.aux_labels, path)
- word_seq = k2.ragged.remove_values_leq(word_seq, 0)
- unique_word_seq, _, _ = k2.ragged.unique_sequences(
- word_seq, need_num_repeats=False, need_new2old_indexes=False
+ if isinstance(lattice.aux_labels, torch.Tensor):
+ word_seq = k2.ragged.index(lattice.aux_labels, path)
+ else:
+ word_seq = lattice.aux_labels.index(path, remove_axis=True)
+
+ word_seq = word_seq.remove_values_leq(0)
+ unique_word_seq, _, _ = word_seq.unique(
+ need_num_repeats=False, need_new2old_indexes=False
)
- unique_word_ids = k2.ragged.to_list(unique_word_seq)
+ unique_word_ids = unique_word_seq.tolist()
assert len(unique_word_ids) == len(ref_texts)
# unique_word_ids[i] contains all hypotheses of the i-th utterance
@@ -743,33 +751,36 @@ def rescore_with_attention_decoder(
scale=scale,
)
- # word_seq is a k2.RaggedInt sharing the same shape as `path`
+ # word_seq is a k2.RaggedTensor sharing the same shape as `path`
# but it contains word IDs. Note that it also contains 0s and -1s.
# The last entry in each sublist is -1.
- word_seq = k2.index(lattice.aux_labels, path)
+ if isinstance(lattice.aux_labels, torch.Tensor):
+ word_seq = k2.ragged.index(lattice.aux_labels, path)
+ else:
+ word_seq = lattice.aux_labels.index(path, remove_axis=True)
# Remove epsilons and -1 from word_seq
- word_seq = k2.ragged.remove_values_leq(word_seq, 0)
+ word_seq = word_seq.remove_values_leq(0)
# Remove paths that has identical word sequences.
#
- # unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
+ # unique_word_seq is still a k2.RaggedTensor with 3 axes [seq][path][word]
# except that there are no repeated paths with the same word_seq
# within a sequence.
#
- # num_repeats is also a k2.RaggedInt with 2 axes containing the
+ # num_repeats is also a k2.RaggedTensor with 2 axes containing the
# multiplicities of each path.
- # num_repeats.num_elements() == unique_word_seqs.tot_size(1)
+ # num_repeats.numel() == unique_word_seqs.tot_size(1)
#
# Since k2.ragged.unique_sequences will reorder paths within a seq,
# `new2old` is a 1-D torch.Tensor mapping from the output path index
# to the input path index.
# new2old.numel() == unique_word_seq.tot_size(1)
- unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
- word_seq, need_num_repeats=True, need_new2old_indexes=True
+ unique_word_seq, num_repeats, new2old = word_seq.unique(
+ need_num_repeats=True, need_new2old_indexes=True
)
- seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
+ seq_to_path_shape = unique_word_seq.shape.get_layer(0)
# path_to_seq_map is a 1-D torch.Tensor.
# path_to_seq_map[i] is the seq to which the i-th path
@@ -778,7 +789,7 @@ def rescore_with_attention_decoder(
# Remove the seq axis.
# Now unique_word_seq has only two axes [path][word]
- unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
+ unique_word_seq = unique_word_seq.remove_axis(0)
# word_fsa is an FsaVec with axes [path][state][arc]
word_fsa = k2.linear_fsa(unique_word_seq)
@@ -796,20 +807,23 @@ def rescore_with_attention_decoder(
# CAUTION: The "tokens" attribute is set in the file
# local/compile_hlg.py
- token_seq = k2.index(lattice.tokens, path)
+ if isinstance(lattice.tokens, torch.Tensor):
+ token_seq = k2.ragged.index(lattice.tokens, path)
+ else:
+ token_seq = lattice.tokens.index(path, remove_axis=True)
# Remove epsilons and -1 from token_seq
- token_seq = k2.ragged.remove_values_leq(token_seq, 0)
+ token_seq = token_seq.remove_values_leq(0)
# Remove the seq axis.
- token_seq = k2.ragged.remove_axis(token_seq, 0)
+ token_seq = token_seq.remove_axis(0)
- token_seq, _ = k2.ragged.index(
- token_seq, indexes=new2old, axis=0, need_value_indexes=False
+ token_seq, _ = token_seq.index(
+ indexes=new2old, axis=0, need_value_indexes=False
)
# Now word in unique_word_seq has its corresponding token IDs.
- token_ids = k2.ragged.to_list(token_seq)
+ token_ids = token_seq.tolist()
num_word_seqs = new2old.numel()
@@ -849,7 +863,7 @@ def rescore_with_attention_decoder(
else:
attention_scale_list = [attention_scale]
- path_2axes = k2.ragged.remove_axis(path, 0)
+ path_2axes = path.remove_axis(0)
ans = dict()
for n_scale in ngram_lm_scale_list:
@@ -859,23 +873,28 @@ def rescore_with_attention_decoder(
+ n_scale * ngram_lm_scores
+ a_scale * attention_scores
)
- ragged_tot_scores = k2.RaggedFloat(seq_to_path_shape, tot_scores)
- argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
+ ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
+ argmax_indexes = ragged_tot_scores.argmax()
- best_path_indexes = k2.index(new2old, argmax_indexes)
+ best_path_indexes = k2.index_select(new2old, argmax_indexes)
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
- best_path = k2.index(path_2axes, best_path_indexes)
+ best_path, _ = path_2axes.index(
+ indexes=best_path_indexes, axis=0, need_value_indexes=False
+ )
- # labels is a k2.RaggedInt with 2 axes [path][token_id]
+ # labels is a k2.RaggedTensor with 2 axes [path][token_id]
# Note that it contains -1s.
- labels = k2.index(lattice.labels.contiguous(), best_path)
+ labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
- labels = k2.ragged.remove_values_eq(labels, -1)
+ labels = labels.remove_values_eq(-1)
- # lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
- # aux_labels is also a k2.RaggedInt with 2 axes
- aux_labels = k2.index(lattice.aux_labels, best_path.values())
+ if isinstance(lattice.aux_labels, torch.Tensor):
+ aux_labels = k2.index_select(lattice.aux_labels, best_path.data)
+ else:
+ aux_labels, _ = lattice.aux_labels.index(
+ indexes=best_path.data, axis=0, need_value_indexes=False
+ )
best_path_fsa = k2.linear_fsa(labels)
best_path_fsa.aux_labels = aux_labels
diff --git a/icefall/lexicon.py b/icefall/lexicon.py
index f1127c7cf..6730bac49 100644
--- a/icefall/lexicon.py
+++ b/icefall/lexicon.py
@@ -157,7 +157,7 @@ class BpeLexicon(Lexicon):
lang_dir / "lexicon.txt"
)
- def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt:
+ def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedTensor:
"""Read a BPE lexicon from file and convert it to a
k2 ragged tensor.
@@ -200,19 +200,18 @@ class BpeLexicon(Lexicon):
)
values = torch.tensor(token_ids, dtype=torch.int32)
- return k2.RaggedInt(shape, values)
+ return k2.RaggedTensor(shape, values)
- def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt:
+ def words_to_piece_ids(self, words: List[str]) -> k2.RaggedTensor:
"""Convert a list of words to a ragged tensor contained
word piece IDs.
"""
word_ids = [self.word_table[w] for w in words]
word_ids = torch.tensor(word_ids, dtype=torch.int32)
- ragged, _ = k2.ragged.index(
- self.ragged_lexicon,
+ ragged, _ = self.ragged_lexicon.index(
indexes=word_ids,
- need_value_indexes=False,
axis=0,
+ need_value_indexes=False,
)
return ragged
diff --git a/icefall/utils.py b/icefall/utils.py
index 2994c2d47..1130d8947 100644
--- a/icefall/utils.py
+++ b/icefall/utils.py
@@ -26,7 +26,6 @@ from pathlib import Path
from typing import Dict, Iterable, List, TextIO, Tuple, Union
import k2
-import k2.ragged as k2r
import kaldialign
import torch
import torch.distributed as dist
@@ -199,26 +198,25 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
Returns a list of lists of int, containing the label sequences we
decoded.
"""
- if isinstance(best_paths.aux_labels, k2.RaggedInt):
+ if isinstance(best_paths.aux_labels, k2.RaggedTensor):
# remove 0's and -1's.
- aux_labels = k2r.remove_values_leq(best_paths.aux_labels, 0)
- aux_shape = k2r.compose_ragged_shapes(
- best_paths.arcs.shape(), aux_labels.shape()
- )
+ aux_labels = best_paths.aux_labels.remove_values_leq(0)
+ # TODO: change arcs.shape() to arcs.shape
+ aux_shape = best_paths.arcs.shape().compose(aux_labels.shape)
# remove the states and arcs axes.
- aux_shape = k2r.remove_axis(aux_shape, 1)
- aux_shape = k2r.remove_axis(aux_shape, 1)
- aux_labels = k2.RaggedInt(aux_shape, aux_labels.values())
+ aux_shape = aux_shape.remove_axis(1)
+ aux_shape = aux_shape.remove_axis(1)
+ aux_labels = k2.RaggedTensor(aux_shape, aux_labels.data)
else:
# remove axis corresponding to states.
- aux_shape = k2r.remove_axis(best_paths.arcs.shape(), 1)
- aux_labels = k2.RaggedInt(aux_shape, best_paths.aux_labels)
+ aux_shape = best_paths.arcs.shape().remove_axis(1)
+ aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
# remove 0's and -1's.
- aux_labels = k2r.remove_values_leq(aux_labels, 0)
+ aux_labels = aux_labels.remove_values_leq(0)
- assert aux_labels.num_axes() == 2
- return k2r.to_list(aux_labels)
+ assert aux_labels.num_axes == 2
+ return aux_labels.tolist()
def store_transcripts(
diff --git a/test/test_bpe_graph_compiler.py b/test/test_bpe_graph_compiler.py
index 67d300b7d..e58c4f1c6 100755
--- a/test/test_bpe_graph_compiler.py
+++ b/test/test_bpe_graph_compiler.py
@@ -16,9 +16,10 @@
# limitations under the License.
+from pathlib import Path
+
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.lexicon import BpeLexicon
-from pathlib import Path
def test():
diff --git a/test/test_utils.py b/test/test_utils.py
index 2dd79689f..b4c9358fd 100644
--- a/test/test_utils.py
+++ b/test/test_utils.py
@@ -60,7 +60,7 @@ def test_get_texts_ragged():
4
"""
)
- fsa1.aux_labels = k2.RaggedInt("[ [1 3 0 2] [] [4 0 1] [-1]]")
+ fsa1.aux_labels = k2.RaggedTensor("[ [1 3 0 2] [] [4 0 1] [-1]]")
fsa2 = k2.Fsa.from_str(
"""
@@ -70,7 +70,7 @@ def test_get_texts_ragged():
3
"""
)
- fsa2.aux_labels = k2.RaggedInt("[[3 0 5 0 8] [0 9 7 0] [-1]]")
+ fsa2.aux_labels = k2.RaggedTensor("[[3 0 5 0 8] [0 9 7 0] [-1]]")
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
texts = get_texts(fsas)
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]