mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Use new APIs with k2.RaggedTensor * Fix style issues. * Update the installation doc, saying it requires at least k2 v1.7 * Use k2 v1.7
157 lines
4.3 KiB
Python
Executable File
157 lines
4.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This script takes as input lang_dir and generates HLG from
|
|
|
|
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
|
- L, the lexicon, built from lang_dir/L_disambig.pt
|
|
|
|
Caution: We use a lexicon that contains disambiguation symbols
|
|
|
|
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
|
|
|
The generated HLG is saved in $lang_dir/HLG.pt
|
|
"""
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import k2
|
|
import torch
|
|
|
|
from icefall.lexicon import Lexicon
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
help="""Input and output directory.
|
|
""",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|
"""
|
|
Args:
|
|
lang_dir:
|
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
|
|
|
Return:
|
|
An FSA representing HLG.
|
|
"""
|
|
lexicon = Lexicon(lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
|
H = k2.ctc_topo(max_token_id)
|
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
|
|
|
if Path("data/lm/G_3_gram.pt").is_file():
|
|
logging.info("Loading pre-compiled G_3_gram")
|
|
d = torch.load("data/lm/G_3_gram.pt")
|
|
G = k2.Fsa.from_dict(d)
|
|
else:
|
|
logging.info("Loading G_3_gram.fst.txt")
|
|
with open("data/lm/G_3_gram.fst.txt") as f:
|
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
|
torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
|
|
|
|
first_token_disambig_id = lexicon.token_table["#0"]
|
|
first_word_disambig_id = lexicon.word_table["#0"]
|
|
|
|
L = k2.arc_sort(L)
|
|
G = k2.arc_sort(G)
|
|
|
|
logging.info("Intersecting L and G")
|
|
LG = k2.compose(L, G)
|
|
logging.info(f"LG shape: {LG.shape}")
|
|
|
|
logging.info("Connecting LG")
|
|
LG = k2.connect(LG)
|
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
|
|
|
logging.info(type(LG.aux_labels))
|
|
logging.info("Determinizing LG")
|
|
|
|
LG = k2.determinize(LG)
|
|
logging.info(type(LG.aux_labels))
|
|
|
|
logging.info("Connecting LG after k2.determinize")
|
|
LG = k2.connect(LG)
|
|
|
|
logging.info("Removing disambiguation symbols on LG")
|
|
|
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
|
|
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
|
LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
|
|
|
|
LG = k2.remove_epsilon(LG)
|
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
|
|
|
LG = k2.connect(LG)
|
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
|
|
|
logging.info("Arc sorting LG")
|
|
LG = k2.arc_sort(LG)
|
|
|
|
logging.info("Composing H and LG")
|
|
# CAUTION: The name of the inner_labels is fixed
|
|
# to `tokens`. If you want to change it, please
|
|
# also change other places in icefall that are using
|
|
# it.
|
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
|
|
|
logging.info("Connecting LG")
|
|
HLG = k2.connect(HLG)
|
|
|
|
logging.info("Arc sorting LG")
|
|
HLG = k2.arc_sort(HLG)
|
|
logging.info(f"HLG.shape: {HLG.shape}")
|
|
|
|
return HLG
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
lang_dir = Path(args.lang_dir)
|
|
|
|
if (lang_dir / "HLG.pt").is_file():
|
|
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
|
return
|
|
|
|
logging.info(f"Processing {lang_dir}")
|
|
|
|
HLG = compile_HLG(lang_dir)
|
|
logging.info(f"Saving HLG.pt to {lang_dir}")
|
|
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = (
|
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
)
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
main()
|