mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Update RESULTS.md (#388)
* update RESULT.md about pruned_transducer_stateless4 * Update RESULT.md This PR is only to update RESULT.md about pruned_transducer_stateless4. * set default value of --use-averaged-model to True * update RESULTS.md and add decode command * minor fix * update export.py * add uploaded files links * update link * fix typos
This commit is contained in:
parent
beab229fd7
commit
148f69d8d9
@ -259,6 +259,126 @@ You can find a pretrained model, training logs, decoding logs, and decoding
|
||||
results at:
|
||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-narrower-2022-05-13>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Transducer 4)
|
||||
|
||||
[pruned_transducer_stateless4](./pruned_transducer_stateless4)
|
||||
|
||||
This version saves averaged model during training, and decodes with averaged model.
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/issues/337> for details about the idea of model averaging.
|
||||
|
||||
#### Training on full librispeech
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/pull/344>
|
||||
|
||||
Using commit `ec0b0e92297cc03fdb09f48cd235e84d2c04156b`.
|
||||
|
||||
The WERs are:
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-------------------------------------------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.75 | 6.74 | --epoch 30 --avg 6 --use_averaged_model False |
|
||||
| greedy search (max sym per frame 1) | 2.69 | 6.64 | --epoch 30 --avg 6 --use_averaged_model True |
|
||||
| fast beam search | 2.72 | 6.67 | --epoch 30 --avg 6 --use_averaged_model False |
|
||||
| fast beam search | 2.66 | 6.6 | --epoch 30 --avg 6 --use_averaged_model True |
|
||||
| modified beam search | 2.67 | 6.68 | --epoch 30 --avg 6 --use_averaged_model False |
|
||||
| modified beam search | 2.62 | 6.57 | --epoch 30 --avg 6 --use_averaged_model True |
|
||||
|
||||
The training command is:
|
||||
|
||||
```bash
|
||||
./pruned_transducer_stateless4/train.py \
|
||||
--world-size 6 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--exp-dir pruned_transducer_stateless4/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300 \
|
||||
--save-every-n 8000 \
|
||||
--keep-last-k 20 \
|
||||
--average-period 100
|
||||
```
|
||||
|
||||
The tensorboard log can be found at
|
||||
<https://tensorboard.dev/experiment/QOGSPBgsR8KzcRMmie9JGw/>
|
||||
|
||||
The decoding command using greedy search is:
|
||||
```bash
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 6 \
|
||||
--exp-dir pruned_transducer_stateless4/exp \
|
||||
--max-duration 300 \
|
||||
--decoding-method greedy_search \
|
||||
--use-averaged-model True
|
||||
```
|
||||
|
||||
The decoding command using fast beam search is:
|
||||
```bash
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 6 \
|
||||
--exp-dir pruned_transducer_stateless4/exp \
|
||||
--max-duration 300 \
|
||||
--decoding-method fast_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
The decoding command using modified beam search is:
|
||||
```bash
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 6 \
|
||||
--exp-dir pruned_transducer_stateless4/exp \
|
||||
--max-duration 300 \
|
||||
--decoding-method modified_beam_search \
|
||||
--use-averaged-model True \
|
||||
--beam-size 4
|
||||
```
|
||||
|
||||
Pretrained models, training logs, decoding logs, and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless4-2022-06-03>
|
||||
|
||||
#### Training on train-clean-100
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/pull/344>
|
||||
|
||||
Using commit `ec0b0e92297cc03fdb09f48cd235e84d2c04156b`.
|
||||
|
||||
The WERs are:
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-------------------------------------------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 7.0 | 18.95 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||
| greedy search (max sym per frame 1) | 6.92 | 18.65 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||
| fast beam search | 6.82 | 18.47 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||
| fast beam search | 6.74 | 18.2 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||
| modified beam search | 6.74 | 18.39 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||
| modified beam search | 6.74 | 18.12 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||
|
||||
The training command is:
|
||||
|
||||
```bash
|
||||
./pruned_transducer_stateless4/train.py \
|
||||
--world-size 3 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--exp-dir pruned_transducer_stateless4/exp \
|
||||
--full-libri 0 \
|
||||
--max-duration 300 \
|
||||
--save-every-n 8000 \
|
||||
--keep-last-k 20 \
|
||||
--average-period 100
|
||||
```
|
||||
|
||||
The tensorboard log can be found at
|
||||
<https://tensorboard.dev/experiment/YVYHq1irQS69s9bW1vQ06Q/>
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Stateless Transducer 3, 2022-04-29)
|
||||
|
||||
[pruned_transducer_stateless3](./pruned_transducer_stateless3)
|
||||
|
@ -128,7 +128,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
|
@ -1 +0,0 @@
|
||||
../pruned_transducer_stateless2/export.py
|
273
egs/librispeech/ASR/pruned_transducer_stateless4/export.py
Executable file
273
egs/librispeech/ASR/pruned_transducer_stateless4/export.py
Executable file
@ -0,0 +1,273 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless4/export.py \
|
||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `pruned_transducer_stateless4/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./pruned_transducer_stateless4/decode.py \
|
||||
--exp-dir ./pruned_transducer_stateless4/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 100 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--use-averaged-model False
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user