2.5 KiB
Results
LibriSpeech BPE training results (Conformer-CTC)
2021-08-19
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/13
TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using attention-decoder
decoder with num_paths equals to 100.
test-clean | test-other | |
---|---|---|
WER | 2.57% | 5.94% |
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the WER above are also listed below.
lm_scale | attention_scale | |
---|---|---|
test-clean | 1.3 | 1.2 |
test-other | 1.2 | 1.1 |
You can use the following commands to reproduce our results:
git clone https://github.com/k2-fsa/icefall
cd icefall
# It was using ef233486, you may not need to switch to it
# git checkout ef233486
cd egs/librispeech/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python conformer_ctc/train.py --bucketing-sampler True \
--concatenate-cuts False \
--max-duration 200 \
--full-libri True \
--world-size 4
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
--epoch 34 \
--avg 20 \
--method attention-decoder \
--max-duration 20 \
--num-paths 100
LibriSpeech training results (Tdnn-Lstm)
2021-08-24
(Wei Kang): Result of phone based Tdnn-Lstm model.
Icefall version: caa0b9e942
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 19 to 14, and using whole-lattice-rescoring
decoding method.
test-clean | test-other | |
---|---|---|
WER | 6.59% | 17.69% |
We searched the lm_score_scale for best results, the scales that produced the WER above are also listed below.
lm_scale | |
---|---|
test-clean | 0.8 |
test-other | 0.9 |