Update result for the librispeech recipe using vocab size 500 and att rate 0.8 (#113)

* Update RESULTS using vocab size 500, att rate 0.8

* Update README.

* Refactoring.

Since FSAs in an Nbest object are linear in structure, we can
add the scores of a path to compute the total scores.

* Update documentation.

* Change default vocab size from 5000 to 500.
This commit is contained in:
Fangjun Kuang 2021-11-10 14:32:52 +08:00 committed by GitHub
parent 04029871b6
commit 21096e99d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 525 additions and 258 deletions

View File

@ -39,9 +39,10 @@ and [TDNN LSTM CTC model][LibriSpeech_tdnn_lstm_ctc].
The best WER we currently have is:
||test-clean|test-other|
|--|--|--|
|WER| 2.57% | 5.94% |
| | test-clean | test-other |
|-----|------------|------------|
| WER | 2.42 | 5.73 |
We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
@ -49,9 +50,9 @@ We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In
The WER for this model is:
||test-clean|test-other|
|--|--|--|
|WER| 6.59% | 17.69% |
| | test-clean | test-other |
|-----|------------|------------|
| WER | 6.59 | 17.69 |
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)

View File

@ -304,9 +304,6 @@ The commonly used options are:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/decode.py --method ctc-decoding --max-duration 300
# Caution: The above command is tested with a model with vocab size 500.
# The default settings in the master will not work.
# Please see https://github.com/k2-fsa/icefall/issues/103
# We will fix it later and delete this note.
And the following command uses attention decoder for rescoring:
@ -386,7 +383,7 @@ Pre-trained Model
-----------------
We have uploaded a pre-trained model to
`<https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc>`_.
`<https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09>`_
We describe how to use the pre-trained model to transcribe a sound file or
multiple sound files in the following.
@ -408,14 +405,13 @@ The following commands describe how to download the pre-trained model:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ mkdir tmp
$ cd tmp
$ git lfs install
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
$ git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
$ cd icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
$ git lfs pull
.. CAUTION::
You have to use ``git lfs`` to download the pre-trained model.
You have to use ``git lfs pull`` to download the pre-trained model.
Otherwise, you will have the following issue when running ``decode.py``:
.. code-block::
@ -426,10 +422,9 @@ The following commands describe how to download the pre-trained model:
.. code-block:: bash
cd icefall_asr_librispeech_conformer_ctc
cd icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
git lfs pull
.. CAUTION::
In order to use this pre-trained model, your k2 version has to be v1.9 or later.
@ -439,46 +434,52 @@ After downloading, you will have the following files:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ tree tmp
$ tree icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
.. code-block:: bash
tmp
`-- icefall_asr_librispeech_conformer_ctc
|-- README.md
|-- data
| |-- lang_bpe
| | |-- HLG.pt
| | |-- bpe.model
| | |-- tokens.txt
| | `-- words.txt
| `-- lm
| `-- G_4_gram.pt
|-- exp
| `-- pretrained.pt
`-- test_wavs
|-- 1089-134686-0001.flac
|-- 1221-135766-0001.flac
|-- 1221-135766-0002.flac
`-- trans.txt
icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
|-- README.md
|-- data
| |-- lang_bpe_500
| | |-- HLG.pt
| | |-- HLG_modified.pt
| | |-- bpe.model
| | |-- tokens.txt
| | `-- words.txt
| `-- lm
| `-- G_4_gram.pt
|-- exp
| |-- cpu_jit.pt
| `-- pretrained.pt
|-- log
| `-- log-decode-2021-11-09-17-38-28
`-- test_wavs
|-- 1089-134686-0001.wav
|-- 1221-135766-0001.wav
|-- 1221-135766-0002.wav
`-- trans.txt
6 directories, 11 files
**File descriptions**:
- ``data/lang_bpe/HLG.pt``
- ``data/lang_bpe_500/HLG.pt``
It is the decoding graph.
- ``data/lang_bpe/bpe.model``
- ``data/lang_bpe_500/HLG_modified.pt``
It uses a modified CTC topology while building HLG.
- ``data/lang_bpe_500/bpe.model``
It is a sentencepiece model. You can use it to reproduce our results.
- ``data/lang_bpe/tokens.txt``
- ``data/lang_bpe_500/tokens.txt``
It contains tokens and their IDs, generated from ``bpe.model``.
Provided only for convenience so that you can look up the SOS/EOS ID easily.
- ``data/lang_bpe/words.txt``
- ``data/lang_bpe_500/words.txt``
It contains words and their IDs.
@ -489,49 +490,55 @@ After downloading, you will have the following files:
- ``exp/pretrained.pt``
It contains pre-trained model parameters, obtained by averaging
checkpoints from ``epoch-15.pt`` to ``epoch-34.pt``.
checkpoints from ``epoch-23.pt`` to ``epoch-77.pt``.
Note: We have removed optimizer ``state_dict`` to reduce file size.
- ``test_waves/*.flac``
- ``exp/cpu_jit.pt``
It contains torch scripted model that can be deployed in C++.
- ``test_wavs/*.wav``
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
- ``test_waves/trans.txt``
- ``test_wavs/trans.txt``
It contains the reference transcripts for the sound files in ``test_waves/``.
It contains the reference transcripts for the sound files in ``test_wavs/``.
The information of the test sound files is listed below:
.. code-block:: bash
$ soxi tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/*.flac
$ soxi icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/*.wav
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac'
Input File : 'icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
File Size : 116k
Bit Rate : 140k
Sample Encoding: 16-bit FLAC
File Size : 212k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac'
Input File : 'icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
File Size : 343k
Bit Rate : 164k
Sample Encoding: 16-bit FLAC
File Size : 535k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'
Input File : 'icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'
Channels : 1
Sample Rate : 16000
Precision : 16-bit
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
File Size : 105k
Bit Rate : 174k
Sample Encoding: 16-bit FLAC
File Size : 154k
Bit Rate : 256k
Sample Encoding: 16-bit Signed Integer PCM
Total Duration of 3 files: 00:00:28.16
@ -564,38 +571,37 @@ The command to run CTC decoding is:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--bpe-model ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/bpe.model \
--method ctc-decoding \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt \
--bpe-model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/bpe.model \
--method ctc-decoding \
--num-classes 500 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
The output is given below:
.. code-block::
2021-10-13 11:21:50,896 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:21:50,896 INFO [pretrained.py:238] Creating model
2021-10-13 11:21:56,669 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:21:56,670 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:21:56,683 INFO [pretrained.py:271] Decoding started
2021-10-13 11:21:57,341 INFO [pretrained.py:290] Building CTC topology
2021-10-13 11:21:57,625 INFO [lexicon.py:113] Loading pre-compiled tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/Linv.pt
2021-10-13 11:21:57,679 INFO [pretrained.py:299] Loading BPE model
2021-10-13 11:22:00,076 INFO [pretrained.py:314] Use CTC decoding
2021-10-13 11:22:00,087 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
2021-11-10 12:12:29,554 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 0, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt', 'words_file': None, 'HLG': None, 'bpe_model': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/bpe.model', 'method': 'ctc-decoding', 'G': None, 'num_paths': 100, 'ngram_lm_scale': 1.3, 'attention_decoder_scale': 1.2, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1, 'sound_files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021', 'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500', 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 12:12:29,554 INFO [pretrained.py:266] device: cuda:0
2021-11-10 12:12:29,554 INFO [pretrained.py:268] Creating model
2021-11-10 12:12:35,600 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 12:12:35,601 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav']
2021-11-10 12:12:35,758 INFO [pretrained.py:301] Decoding started
2021-11-10 12:12:36,025 INFO [pretrained.py:319] Use CTC decoding
2021-11-10 12:12:36,204 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROFFELS
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED B
OSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-10-13 11:22:00,087 INFO [pretrained.py:402] Decoding Done
2021-11-10 12:12:36,204 INFO [pretrained.py:427] Decoding Done
HLG decoding
^^^^^^^^^^^^
@ -608,36 +614,39 @@ The command to run HLG decoding is:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt \
--words-file ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt \
--method 1best \
--num-classes 500 \
--HLG ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
The output is given below:
.. code-block::
2021-10-13 11:25:19,458 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:25:19,458 INFO [pretrained.py:238] Creating model
2021-10-13 11:25:25,342 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:25:25,343 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:25:25,356 INFO [pretrained.py:271] Decoding started
2021-10-13 11:25:26,026 INFO [pretrained.py:327] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-10-13 11:25:33,735 INFO [pretrained.py:359] Use HLG decoding
2021-10-13 11:25:34,013 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
2021-11-10 13:33:03,723 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 0, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt', 'words_file': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt', 'HLG': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt', 'bpe_model': None, 'method': '1best', 'G': None, 'num_paths': 100, 'ngram_lm_scale': 1.3, 'attention_decoder_scale': 1.2, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1, 'sound_files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021', 'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500', 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 13:33:03,723 INFO [pretrained.py:266] device: cuda:0
2021-11-10 13:33:03,723 INFO [pretrained.py:268] Creating model
2021-11-10 13:33:09,775 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 13:33:09,776 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav']
2021-11-10 13:33:09,881 INFO [pretrained.py:301] Decoding started
2021-11-10 13:33:09,951 INFO [pretrained.py:352] Loading HLG from ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:33:13,234 INFO [pretrained.py:384] Use HLG decoding
2021-11-10 13:33:13,571 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-10-13 11:25:34,014 INFO [pretrained.py:402] Decoding Done
2021-11-10 13:33:13,571 INFO [pretrained.py:427] Decoding Done
HLG decoding + LM rescoring
^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -650,41 +659,43 @@ The command to run HLG decoding + LM rescoring is:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
--method whole-lattice-rescoring \
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 0.8 \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
./conformer_ctc/pretrained.py \
--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt \
--words-file ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt \
--method whole-lattice-rescoring \
--num-classes 500 \
--HLG ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt \
--G ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt \
--ngram-lm-scale 1.0 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
Its output is:
.. code-block::
2021-10-13 11:28:19,129 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:28:19,129 INFO [pretrained.py:238] Creating model
2021-10-13 11:28:23,531 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:28:23,532 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:28:23,544 INFO [pretrained.py:271] Decoding started
2021-10-13 11:28:24,141 INFO [pretrained.py:327] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-10-13 11:28:30,752 INFO [pretrained.py:338] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
2021-10-13 11:28:48,308 INFO [pretrained.py:364] Use HLG decoding + LM rescoring
2021-10-13 11:28:48,815 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
2021-11-10 13:39:55,857 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 0, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt', 'words_file': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt', 'HLG': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt', 'bpe_model': None, 'method': 'whole-lattice-rescoring', 'G': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt', 'num_paths': 100, 'ngram_lm_scale': 1.0, 'attention_decoder_scale': 1.2, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1, 'sound_files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-$it-sha1': '7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021', 'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500', 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 13:39:55,858 INFO [pretrained.py:266] device: cuda:0
2021-11-10 13:39:55,858 INFO [pretrained.py:268] Creating model
2021-11-10 13:40:01,979 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 13:40:01,980 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav']
2021-11-10 13:40:02,055 INFO [pretrained.py:301] Decoding started
2021-11-10 13:40:02,117 INFO [pretrained.py:352] Loading HLG from ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:40:05,051 INFO [pretrained.py:363] Loading G from ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt
2021-11-10 13:40:18,959 INFO [pretrained.py:389] Use HLG decoding + LM rescoring
2021-11-10 13:40:19,546 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-10-13 11:28:48,815 INFO [pretrained.py:402] Decoding Done
2021-11-10 13:40:19,546 INFO [pretrained.py:427] Decoding Done
HLG decoding + LM rescoring + attention decoder rescoring
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -699,45 +710,72 @@ The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
$ cd egs/librispeech/ASR
$ ./conformer_ctc/pretrained.py \
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
--method attention-decoder \
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
--ngram-lm-scale 1.3 \
--attention-decoder-scale 1.2 \
--nbest-scale 0.5 \
--num-paths 100 \
--sos-id 1 \
--eos-id 1 \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
--checkpoint ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt \
--words-file ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt \
--method attention-decoder \
--num-classes 500 \
--HLG ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt \
--G ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt \
--ngram-lm-scale 2.0 \
--attention-decoder-scale 2.0 \
--nbest-scale 0.5 \
--num-paths 100 \
--sos-id 1 \
--eos-id 1 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
The output is below:
.. code-block::
2021-10-13 11:29:50,106 INFO [pretrained.py:236] device: cuda:0
2021-10-13 11:29:50,106 INFO [pretrained.py:238] Creating model
2021-10-13 11:29:56,063 INFO [pretrained.py:255] Constructing Fbank computer
2021-10-13 11:29:56,063 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
2021-10-13 11:29:56,077 INFO [pretrained.py:271] Decoding started
2021-10-13 11:29:56,770 INFO [pretrained.py:327] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
2021-10-13 11:30:04,023 INFO [pretrained.py:338] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
2021-10-13 11:30:18,163 INFO [pretrained.py:372] Use HLG + LM rescoring + attention decoder rescoring
2021-10-13 11:30:19,367 INFO [pretrained.py:400]
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
2021-11-10 13:43:45,598 INFO [pretrained.py:260] {'sample_rate': 16000, 'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/pretrained.pt', 'words_file': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt', 'HLG': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt', 'bpe_model': None, 'method': 'attention-decoder', 'G': './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt', 'num_paths': 100, 'ngram_lm_scale': 2.0, 'attention_decoder_scale': 2.0, 'nbest_scale': 0.5, 'sos_id': 1, 'num_classes': 500, 'eos_id': 1, 'sound_files': ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav'], 'env_info': {'k2-version': '1.9', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '7178d67e594bc7fa89c2b331ad7bd1c62a6a9eb4', 'k2-git-date': 'Tue Oct 26 22:12:54 2021', 'lhotse-version': '0.11.0.dev+missing.version.file', 'torch-cuda-available': True, 'torch-cuda-version': '10.1', 'python-version': '3.8', 'icefall-git-branch': 'bpe-500', 'icefall-git-sha1': '8d93169-dirty', 'icefall-git-date': 'Wed Nov 10 11:52:44 2021', 'icefall-path': '/ceph-fj/fangjun/open-source-2/icefall-fix', 'k2-path': '/ceph-fj/fangjun/open-source-2/k2-bpe-500/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-bpe-500/lhotse/__init__.py'}}
2021-11-10 13:43:45,599 INFO [pretrained.py:266] device: cuda:0
2021-11-10 13:43:45,599 INFO [pretrained.py:268] Creating model
2021-11-10 13:43:51,833 INFO [pretrained.py:285] Constructing Fbank computer
2021-11-10 13:43:51,834 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav']
2021-11-10 13:43:51,915 INFO [pretrained.py:301] Decoding started
2021-11-10 13:43:52,076 INFO [pretrained.py:352] Loading HLG from ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:43:55,110 INFO [pretrained.py:363] Loading G from ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt
2021-11-10 13:44:09,329 INFO [pretrained.py:397] Use HLG + LM rescoring + attention decoder rescoring
2021-11-10 13:44:10,192 INFO [pretrained.py:425]
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2021-10-13 11:30:19,367 INFO [pretrained.py:402] Decoding Done
2021-11-10 13:44:10,192 INFO [pretrained.py:427] Decoding Done
Compute WER with the pre-trained model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To check the WER of the pre-trained model on the test datasets, run:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ cd icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/
$ ln -s pretrained.pt epoch-999.pt
$ cd ../..
$ ./conformer_ctc/decode.py \
--exp-dir ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp \
--lang-dir ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500 \
--lm-dir ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm \
--epoch 999 \
--avg 1 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--max-duration 30 \
--num-paths 1000 \
--method attention-decoder \
--nbest-scale 0.5
Colab notebook
--------------
@ -756,7 +794,7 @@ We do provide a colab notebook for this recipe showing how to use a pre-trained
``HLG decoding + LM rescoring + attention decoder rescoring``.
Otherwise, you can only run ``HLG decoding`` with Colab.
**Congratulations!** You have finished the librispeech ASR recipe with
**Congratulations!** You have finished the LibriSpeech ASR recipe with
conformer CTC models in ``icefall``.
If you want to deploy your trained model in C++, please read the following section.
@ -764,34 +802,14 @@ If you want to deploy your trained model in C++, please read the following secti
Deployment with C++
-------------------
This section describes how to deploy your trained model in C++, without
This section describes how to deploy the pre-trained model in C++, without
Python dependencies.
We assume you have run ``./prepare.sh`` and have the following directories available:
.. HINT::
.. code-block:: bash
At present, it does NOT support streaming decoding.
data
|-- lang_bpe
Also, we assume your checkpoints are saved in ``conformer_ctc/exp``.
If you know that averaging 20 checkpoints starting from ``epoch-30.pt`` yields the
lowest WER, you can run the following commands
.. code-block::
$ cd egs/librispeech/ASR
$ ./conformer_ctc/export.py \
--epoch 30 \
--avg 20 \
--jit 1 \
--lang-dir data/lang_bpe \
--exp-dir conformer_ctc/exp
to get a torch scripted model saved in ``conformer_ctc/exp/cpu_jit.pt``.
Now you have all needed files ready. Let us compile k2 from source:
First, let us compile k2 from source:
.. code-block:: bash
@ -809,67 +827,232 @@ Now you have all needed files ready. Let us compile k2 from source:
$ mkdir build-release
$ cd build-release
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j decode
# You will find an executable: `./bin/decode`
$ make -j ctc_decode hlg_decode ngram_lm_rescore attention_rescore
# You will find four binaries in `./bin`, i.e.,
# ./bin/ctc_decode, ./bin/hlg_decode,
# ./bin/ngram_lm_rescore, and ./bin/attention_rescore
Now you are ready to go!
To view the usage of ``./bin/decode``, run:
Assume you have run:
.. code-block:: bash
$ cd k2/build-release
$ ln -s /path/to/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09 ./
To view the usage of ``./bin/ctc_decode``, run:
.. code-block::
$ ./bin/decode
$ ./bin/ctc_decode
It will show you the following message:
.. code-block::
.. code-block:: bash
Please provide --jit_pt
Please provide --nn_model
(1) CTC decoding
./bin/decode \
--use_ctc_decoding true \
--jit_pt <path to exported torch script pt file> \
--bpe_model <path to pretrained BPE model> \
/path/to/foo.wav \
/path/to/bar.wav \
<more wave files if any>
(2) HLG decoding
./bin/decode \
--use_ctc_decoding false \
--jit_pt <path to exported torch script pt file> \
--hlg <path to HLG.pt> \
--word-table <path to words.txt> \
/path/to/foo.wav \
/path/to/bar.wav \
<more wave files if any>
This file implements decoding with a CTC topology, without any
kinds of LM or lexicons.
--use_gpu false to use CPU
--use_gpu true to use GPU
Usage:
./bin/ctc_decode \
--use_gpu true \
--nn_model <path to torch scripted pt file> \
--bpe_model <path to pre-trained BPE model> \
<path to foo.wav> \
<path to bar.wav> \
<more waves if any>
To see all possible options, use
./bin/ctc_decode --help
Caution:
- Only sound files (*.wav) with single channel are supported.
- It assumes the model is conformer_ctc/transformer.py from icefall.
If you use a different model, you have to change the code
related to `model.forward` in this file.
``./bin/decode`` supports two types of decoding at present: CTC decoding and HLG decoding.
CTC decoding
^^^^^^^^^^^^
You need to provide:
.. code-block:: bash
- ``--jit_pt``, this is the file generated by ``conformer_ctc/export.py``. You can find it
in ``conformer_ctc/exp/cpu_jit.pt``.
- ``--bpe_model``, this is a sentence piece model generated by ``prepare.sh``. You can find
it in ``data/lang_bpe/bpe.model``.
./bin/ctc_decode \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.pt \
--bpe_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/bpe.model \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
Its output is:
.. code-block::
2021-11-10 13:57:55.316 [I] k2/torch/bin/ctc_decode.cu:105:int main(int, char**) Use GPU
2021-11-10 13:57:55.316 [I] k2/torch/bin/ctc_decode.cu:109:int main(int, char**) Device: cuda:0
2021-11-10 13:57:55.316 [I] k2/torch/bin/ctc_decode.cu:118:int main(int, char**) Load wave files
2021-11-10 13:58:01.221 [I] k2/torch/bin/ctc_decode.cu:125:int main(int, char**) Build Fbank computer
2021-11-10 13:58:01.222 [I] k2/torch/bin/ctc_decode.cu:136:int main(int, char**) Compute features
2021-11-10 13:58:01.228 [I] k2/torch/bin/ctc_decode.cu:144:int main(int, char**) Load neural network model
2021-11-10 13:58:02.19 [I] k2/torch/bin/ctc_decode.cu:159:int main(int, char**) Compute nnet_output
2021-11-10 13:58:02.543 [I] k2/torch/bin/ctc_decode.cu:174:int main(int, char**) Build CTC topo
2021-11-10 13:58:02.547 [I] k2/torch/bin/ctc_decode.cu:177:int main(int, char**) Decoding
2021-11-10 13:58:02.708 [I] k2/torch/bin/ctc_decode.cu:207:int main(int, char**)
Decoding result:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROFFELS
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
HLG decoding
^^^^^^^^^^^^
You need to provide:
.. code-block:: bash
- ``--jit_pt``, this is the same file as in CTC decoding.
- ``--hlg``, this file is generated by ``prepare.sh``. You can find it in ``data/lang_bpe/HLG.pt``.
- ``--word-table``, this file is generated by ``prepare.sh``. You can find it in ``data/lang_bpe/words.txt``.
./bin/hlg_decode \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.pt \
--hlg ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt \
--word_table ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
We do provide a Colab notebook, showing you how to run a torch scripted model in C++.
The output is:
.. code-block::
2021-11-10 13:59:04.729 [I] k2/torch/bin/hlg_decode.cu:111:int main(int, char**) Use GPU
2021-11-10 13:59:04.729 [I] k2/torch/bin/hlg_decode.cu:115:int main(int, char**) Device: cuda:0
2021-11-10 13:59:04.729 [I] k2/torch/bin/hlg_decode.cu:124:int main(int, char**) Load wave files
2021-11-10 13:59:10.702 [I] k2/torch/bin/hlg_decode.cu:131:int main(int, char**) Build Fbank computer
2021-11-10 13:59:10.703 [I] k2/torch/bin/hlg_decode.cu:142:int main(int, char**) Compute features
2021-11-10 13:59:10.707 [I] k2/torch/bin/hlg_decode.cu:150:int main(int, char**) Load neural network model
2021-11-10 13:59:11.545 [I] k2/torch/bin/hlg_decode.cu:165:int main(int, char**) Compute nnet_output
2021-11-10 13:59:12.72 [I] k2/torch/bin/hlg_decode.cu:180:int main(int, char**) Load ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 13:59:12.994 [I] k2/torch/bin/hlg_decode.cu:185:int main(int, char**) Decoding
2021-11-10 13:59:13.268 [I] k2/torch/bin/hlg_decode.cu:216:int main(int, char**)
Decoding result:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
HLG decoding + n-gram LM rescoring
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
./bin/ngram_lm_rescore \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.pt \
--hlg ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt \
--g ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt \
--ngram_lm_scale 1.0 \
--word_table ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
The output is:
.. code-block::
2021-11-10 14:00:55.279 [I] k2/torch/bin/ngram_lm_rescore.cu:122:int main(int, char**) Use GPU
2021-11-10 14:00:55.280 [I] k2/torch/bin/ngram_lm_rescore.cu:126:int main(int, char**) Device: cuda:0
2021-11-10 14:00:55.280 [I] k2/torch/bin/ngram_lm_rescore.cu:135:int main(int, char**) Load wave files
2021-11-10 14:01:01.214 [I] k2/torch/bin/ngram_lm_rescore.cu:142:int main(int, char**) Build Fbank computer
2021-11-10 14:01:01.215 [I] k2/torch/bin/ngram_lm_rescore.cu:153:int main(int, char**) Compute features
2021-11-10 14:01:01.219 [I] k2/torch/bin/ngram_lm_rescore.cu:161:int main(int, char**) Load neural network model
2021-11-10 14:01:01.945 [I] k2/torch/bin/ngram_lm_rescore.cu:176:int main(int, char**) Compute nnet_output
2021-11-10 14:01:02.475 [I] k2/torch/bin/ngram_lm_rescore.cu:191:int main(int, char**) Load ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 14:01:03.398 [I] k2/torch/bin/ngram_lm_rescore.cu:199:int main(int, char**) Decoding
2021-11-10 14:01:03.515 [I] k2/torch/bin/ngram_lm_rescore.cu:205:int main(int, char**) Load n-gram LM: ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt
2021-11-10 14:01:07.432 [W] k2/torch/csrc/deserialization.cu:441:k2::FsaClass k2::LoadFsa(const string&, c10::optional<c10::Device>)
Ignore non tensor attribute: 'dummy' of type: Int
2021-11-10 14:01:07.589 [I] k2/torch/bin/ngram_lm_rescore.cu:214:int main(int, char**) Rescore with an n-gram LM
2021-11-10 14:01:08.68 [I] k2/torch/bin/ngram_lm_rescore.cu:242:int main(int, char**)
Decoding result:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
HLG decoding + n-gram LM rescoring + attention decoder rescoring
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
./bin/attention_rescore \
--use_gpu true \
--nn_model ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/exp/cpu_jit.pt \
--hlg ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt \
--g ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt \
--ngram_lm_scale 2.0 \
--attention_scale 2.0 \
--num_paths 100 \
--nbest_scale 0.5 \
--word_table ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/words.txt \
--sos_id 1 \
--eos_id 1 \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
The output is:
.. code-block::
2021-11-10 14:02:43.656 [I] k2/torch/bin/attention_rescore.cu:149:int main(int, char**) Use GPU
2021-11-10 14:02:43.656 [I] k2/torch/bin/attention_rescore.cu:153:int main(int, char**) Device: cuda:0
2021-11-10 14:02:43.656 [I] k2/torch/bin/attention_rescore.cu:162:int main(int, char**) Load wave files
2021-11-10 14:02:49.216 [I] k2/torch/bin/attention_rescore.cu:169:int main(int, char**) Build Fbank computer
2021-11-10 14:02:49.217 [I] k2/torch/bin/attention_rescore.cu:180:int main(int, char**) Compute features
2021-11-10 14:02:49.222 [I] k2/torch/bin/attention_rescore.cu:188:int main(int, char**) Load neural network model
2021-11-10 14:02:49.984 [I] k2/torch/bin/attention_rescore.cu:203:int main(int, char**) Compute nnet_output
2021-11-10 14:02:50.624 [I] k2/torch/bin/attention_rescore.cu:220:int main(int, char**) Load ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lang_bpe_500/HLG.pt
2021-11-10 14:02:51.519 [I] k2/torch/bin/attention_rescore.cu:228:int main(int, char**) Decoding
2021-11-10 14:02:51.632 [I] k2/torch/bin/attention_rescore.cu:234:int main(int, char**) Load n-gram LM: ./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/data/lm/G_4_gram.pt
2021-11-10 14:02:55.537 [W] k2/torch/csrc/deserialization.cu:441:k2::FsaClass k2::LoadFsa(const string&, c10::optional<c10::Device>) Ignore non tensor attribute: 'dummy' of type: Int
2021-11-10 14:02:55.645 [I] k2/torch/bin/attention_rescore.cu:243:int main(int, char**) Rescore with an n-gram LM
2021-11-10 14:02:55.970 [I] k2/torch/bin/attention_rescore.cu:246:int main(int, char**) Sample 100 paths
2021-11-10 14:02:56.215 [I] k2/torch/bin/attention_rescore.cu:293:int main(int, char**) Run attention decoder
2021-11-10 14:02:57.35 [I] k2/torch/bin/attention_rescore.cu:303:int main(int, char**) Rescoring
2021-11-10 14:02:57.179 [I] k2/torch/bin/attention_rescore.cu:369:int main(int, char**)
Decoding result:
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1089-134686-0001.wav
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0001.wav
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09/test_wavs/1221-135766-0002.wav
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
There is a Colab notebook showing you how to run a torch scripted model in C++.
Please see |librispeech asr conformer ctc torch script colab notebook|
.. |librispeech asr conformer ctc torch script colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg

View File

@ -1,6 +1,65 @@
## Results
### LibriSpeech BPE training results (Conformer-CTC)
#### 2021-11-09
The best WER, as of 2021-11-09, for the librispeech test dataset is below
(using HLG decoding + n-gram LM rescoring + attention decoder rescoring):
| | test-clean | test-other |
|-----|------------|------------|
| WER | 2.42 | 5.73 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 2.0 | 2.0 |
To reproduce the above result, use the following commands for training:
```
cd egs/librispeech/ASR/conformer_ctc
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./conformer_ctc/train.py \
--exp-dir conformer_ctc/exp_500_att0.8 \
--lang-dir data/lang_bpe_500 \
--att-rate 0.8 \
--full-libri 1 \
--max-duration 200 \
--concatenate-cuts 0 \
--world-size 4 \
--bucketing-sampler 1 \
--start-epoch 0 \
--num-epochs 90
# Note: It trains for 90 epochs, but the best WER is at epoch-77.pt
```
and the following command for decoding
```
./conformer_ctc/decode.py \
--exp-dir conformer_ctc/exp_500_att0.8 \
--lang-dir data/lang_bpe_500 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 77 \
--avg 55 \
--method attention-decoder \
--nbest-scale 0.5
```
You can find the pre-trained model by visiting
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09>
The tensorboard log for training is available at
<https://tensorboard.dev/experiment/hZDWrZfaSqOMqtW0NEfXKg/#scalars>
#### 2021-08-19
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/13

View File

@ -63,7 +63,7 @@ def get_parser():
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_5000",
default="data/lang_bpe_500",
help="The lang dir",
)

View File

@ -143,17 +143,25 @@ def get_parser():
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_5000",
default="data/lang_bpe_500",
help="The lang dir",
)
parser.add_argument(
"--lm-dir",
type=str,
default="data/lm",
help="""The LM dir.
It should contain either G_4_gram.pt or G_4_gram.fst.txt
""",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"lm_dir": Path("data/lm"),
# parameters for conformer
"subsampling_factor": 4,
"vgg_frontend": False,
@ -532,6 +540,7 @@ def main():
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
args.lm_dir = Path(args.lm_dir)
params = get_params()
params.update(vars(args))
@ -572,9 +581,8 @@ def main():
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
if not hasattr(HLG, "lm_scores"):
@ -601,11 +609,16 @@ def main():
G.labels[G.labels >= first_word_disambig_id] = 0
G = k2.Fsa.from_fsas([G]).to(device)
G = k2.arc_sort(G)
# Save a dummy value so that it can be loaded in C++.
# See https://github.com/pytorch/pytorch/issues/67902
# for why we need to do this.
G["dummy"] = 1
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
G = k2.Fsa.from_dict(d).to(device)
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
G = k2.Fsa.from_dict(d)
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
# Add epsilon self-loops to G as we will compose

View File

@ -65,7 +65,7 @@ def get_parser():
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_5000",
default="data/lang_bpe_500",
help="""It contains language related input files such as "lexicon.txt"
""",
)

View File

@ -169,7 +169,7 @@ def get_parser():
parser.add_argument(
"--num-classes",
type=int,
default=5000,
default=500,
help="""
Vocab size in the BPE model.
""",

View File

@ -81,7 +81,7 @@ def get_parser():
parser.add_argument(
"--num-epochs",
type=int,
default=35,
default=78,
help="Number of epochs to train.",
)
@ -108,13 +108,22 @@ def get_parser():
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_5000",
default="data/lang_bpe_500",
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
parser.add_argument(
"--att-rate",
type=float,
default=0.8,
help="""The attention rate.
The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
""",
)
return parser
@ -198,7 +207,6 @@ def get_params() -> AttributeDict:
"beam_size": 10,
"reduction": "sum",
"use_double_scores": True,
"att_rate": 0.7,
# parameters for Noam
"weight_decay": 1e-6,
"lr_factor": 5.0,

View File

@ -311,7 +311,7 @@ class Transformer(nn.Module):
self,
memory: torch.Tensor,
memory_key_padding_mask: torch.Tensor,
token_ids: List[List[int]],
token_ids: List[torch.Tensor],
sos_id: int,
eos_id: int,
) -> torch.Tensor:
@ -334,6 +334,11 @@ class Transformer(nn.Module):
"""
# The common part between this function and decoder_forward could be
# extracted as a separate function.
if isinstance(token_ids[0], torch.Tensor):
# This branch is executed by torchscript in C++.
# See https://github.com/k2-fsa/k2/pull/870
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
token_ids = [tolist(t) for t in token_ids]
ys_in = add_sos(token_ids, sos_id=sos_id)
ys_in = [torch.tensor(y) for y in ys_in]
@ -660,7 +665,7 @@ class PositionalEncoding(nn.Module):
self.xscale = math.sqrt(self.d_model)
self.dropout = nn.Dropout(p=dropout)
# not doing: self.pe = None because of errors thrown by torchscript
self.pe = torch.zeros(0, 0, dtype=torch.float32)
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
def extend_pe(self, x: torch.Tensor) -> None:
"""Extend the time t in the positional encoding if required.
@ -1000,3 +1005,8 @@ def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
with EOS ID.
"""
return [utt + [eos_id] for utt in token_ids]
def tolist(t: torch.Tensor) -> List[int]:
"""Used by jit"""
return torch.jit.annotate(List[int], t.tolist())

View File

@ -364,23 +364,13 @@ class Nbest(object):
Return a ragged tensor with 2 axes [utt][path_scores].
Its dtype is torch.float64.
"""
# Caution: We need a clone here. `self.fsa.scores` is a
# reference to a tensor representing the last field of an arc
# in the FSA (Remeber that an arc has four fields.) If we later assign
# `self.fsa.scores`, it will also change the scores on every arc, which
# means saved_scores will also be changed if we don't use `clone()`
# here.
saved_scores = self.fsa.scores.clone()
scores_shape = self.fsa.arcs.shape().remove_axis(1)
# scores_shape has axes [path][arc]
am_scores = self.fsa.scores - self.fsa.lm_scores
ragged_am_scores = k2.RaggedTensor(scores_shape, am_scores.contiguous())
tot_scores = ragged_am_scores.sum()
# The `scores` of every arc consists of `am_scores` and `lm_scores`
self.fsa.scores = self.fsa.scores - self.fsa.lm_scores
am_scores = self.fsa.get_tot_scores(
use_double_scores=True, log_semiring=False
)
self.fsa.scores = saved_scores
return k2.RaggedTensor(self.shape, am_scores)
return k2.RaggedTensor(self.shape, tot_scores)
def compute_lm_scores(self) -> k2.RaggedTensor:
"""Compute LM scores of each linear FSA (i.e., each path within
@ -397,17 +387,16 @@ class Nbest(object):
Return a ragged tensor with 2 axes [utt][path_scores].
Its dtype is torch.float64.
"""
saved_scores = self.fsa.scores.clone()
scores_shape = self.fsa.arcs.shape().remove_axis(1)
# scores_shape has axes [path][arc]
# The `scores` of every arc consists of `am_scores` and `lm_scores`
self.fsa.scores = self.fsa.lm_scores.clone()
lm_scores = self.fsa.get_tot_scores(
use_double_scores=True, log_semiring=False
ragged_lm_scores = k2.RaggedTensor(
scores_shape, self.fsa.lm_scores.contiguous()
)
self.fsa.scores = saved_scores
return k2.RaggedTensor(self.shape, lm_scores)
tot_scores = ragged_lm_scores.sum()
return k2.RaggedTensor(self.shape, tot_scores)
def tot_scores(self) -> k2.RaggedTensor:
"""Get total scores of FSAs in this Nbest.
@ -420,10 +409,14 @@ class Nbest(object):
Return a ragged tensor with two axes [utt][path_scores].
Its dtype is torch.float64.
"""
scores = self.fsa.get_tot_scores(
use_double_scores=True, log_semiring=False
)
return k2.RaggedTensor(self.shape, scores)
scores_shape = self.fsa.arcs.shape().remove_axis(1)
# scores_shape has axes [path][arc]
ragged_scores = k2.RaggedTensor(scores_shape, self.scores.contiguous())
tot_scores = ragged_scores.sum()
return k2.RaggedTensor(self.shape, tot_scores)
def build_levenshtein_graphs(self) -> k2.Fsa:
"""Return an FsaVec with axes [utt][state][arc]."""