7 Commits

Author SHA1 Message Date
Fangjun Kuang
21096e99d8
Update result for the librispeech recipe using vocab size 500 and att rate 0.8 (#113)
* Update RESULTS using vocab size 500, att rate 0.8

* Update README.

* Refactoring.

Since FSAs in an Nbest object are linear in structure, we can
add the scores of a path to compute the total scores.

* Update documentation.

* Change default vocab size from 5000 to 500.
2021-11-10 14:32:52 +08:00
Fangjun Kuang
4890e27b45
Extract framewise alignment information using CTC decoding (#39)
* Use new APIs with k2.RaggedTensor

* Fix style issues.

* Update the installation doc, saying it requires at least k2 v1.7

* Extract framewise alignment information using CTC decoding.

* Print environment information.

Print information about k2, lhotse, PyTorch, and icefall.

* Fix CI.

* Fix CI.

* Compute framewise alignment information of the LibriSpeech dataset.

* Update comments for the time to compute alignments of train-960.

* Preserve cut id in mix cut transformer.

* Minor fixes.

* Add doc about how to extract framewise alignments.
2021-10-18 14:24:33 +08:00
Fangjun Kuang
707d7017a7
Support pure ctc decoding requiring neither a lexicon nor an n-gram LM (#58)
* Rename lattice_score_scale to nbest_scale.

* Support pure CTC decoding requiring neither a lexicion nor an n-gram LM.

* Fix style issues.

* Fix a typo.

* Minor fixes.
2021-09-26 14:21:49 +08:00
Fangjun Kuang
7f8e3a673a
Add commands for reproducing. (#40)
* Add commands for reproducing.

* Use --bucketing-sampler by default.
2021-09-09 13:50:31 +08:00
Fangjun Kuang
abadc71415
Use new APIs with k2.RaggedTensor (#38)
* Use new APIs with k2.RaggedTensor

* Fix style issues.

* Update the installation doc, saying it requires at least k2 v1.7

* Use k2 v1.7
2021-09-08 14:55:30 +08:00
pkufool
f4223ee110
Add TDNN-LSTM-CTC Results (#25)
* Add tdnn-lstm pretrained model and results

* Add docs for TDNN-LSTM-CTC

* Minor fix

* Fix typo

* Fix style checking
2021-08-24 21:09:27 +08:00
pkufool
ef233486ae
The training script produce WER of 2.57% on librispeech test-clean (#13)
* Add grad_clip and weight-decay, small fix of dataloader and masking

* Add RESULTS.md
2021-08-20 10:08:08 +08:00