* Add modified beam search for pruned rnn-t.
* Fix style issues.
* Update RESULTS.md.
* Fix typos.
* Minor fixes.
* Test the pre-trained model using GitHub actions.
* Let the user install optimized_transducer on her own.
* Fix errors in GitHub CI.
* Disable weight decay.
* Remove input feature batchnorm..
* Replace BatchNorm in the Conformer model with LayerNorm.
* Use tanh in the joint network.
* Remove sos ID.
* Reduce the number of decoder layers from 4 to 2.
* Minor fixes.
* Fix typos.
* Begin to add RNN-T training for librispeech.
* Copy files from conformer_ctc.
Will edit it.
* Use conformer/transformer model as encoder.
* Begin to add training script.
* Add training code.
* Remove long utterances to avoid OOM when a large max_duraiton is used.
* Begin to add decoding script.
* Add decoding script.
* Minor fixes.
* Add beam search.
* Use LSTM layers for the encoder.
Need more tunings.
* Use stateless decoder.
* Minor fixes to make it ready for merge.
* Fix README.
* Update RESULT.md to include RNN-T Conformer.
* Minor fixes.
* Fix tests.
* Minor fixes.
* Minor fixes.
* Fix tests.
* Update RESULTS using vocab size 500, att rate 0.8
* Update README.
* Refactoring.
Since FSAs in an Nbest object are linear in structure, we can
add the scores of a path to compute the total scores.
* Update documentation.
* Change default vocab size from 5000 to 500.
* Use new APIs with k2.RaggedTensor
* Fix style issues.
* Update the installation doc, saying it requires at least k2 v1.7
* Extract framewise alignment information using CTC decoding.
* Print environment information.
Print information about k2, lhotse, PyTorch, and icefall.
* Fix CI.
* Fix CI.
* Compute framewise alignment information of the LibriSpeech dataset.
* Update comments for the time to compute alignments of train-960.
* Preserve cut id in mix cut transformer.
* Minor fixes.
* Add doc about how to extract framewise alignments.
* Rename lattice_score_scale to nbest_scale.
* Support pure CTC decoding requiring neither a lexicion nor an n-gram LM.
* Fix style issues.
* Fix a typo.
* Minor fixes.