21 Commits

Author SHA1 Message Date
Fangjun Kuang
bb7f6ed6b7
Add modified beam search for pruned rnn-t. (#248)
* Add modified beam search for pruned rnn-t.

* Fix style issues.

* Update RESULTS.md.

* Fix typos.

* Minor fixes.

* Test the pre-trained model using GitHub actions.

* Let the user install optimized_transducer on her own.

* Fix errors in GitHub CI.
2022-03-12 16:16:55 +08:00
Fangjun Kuang
05cb297858
Update result for full libri + GigaSpeech using transducer_stateless. (#231) 2022-03-01 17:01:46 +08:00
Fangjun Kuang
72f838dee1
Update results for transducer_stateless after training for more epochs. (#207) 2022-03-01 16:35:02 +08:00
Wei Kang
b702281e90
Use k2 pruned transducer loss to train conformer-transducer model (#194)
* Using k2 pruned version transducer loss to train model

* Fix style

* Minor fixes
2022-02-17 13:33:54 +08:00
Fangjun Kuang
27fa5f05d3
Update git SHA-1 in RESULTS.md for transducer_stateless. (#202) 2022-02-07 18:45:45 +08:00
Fangjun Kuang
a8150021e0
Use modified transducer loss in training. (#179)
* Use modified transducer loss in training.

* Minor fix.

* Add modified beam search.

* Add modified beam search.

* Minor fixes.

* Fix typo.

* Update RESULTS.

* Fix a typo.

* Minor fixes.
2022-02-07 18:37:36 +08:00
Fangjun Kuang
f94ff19bfe
Refactor beam search and update results. (#177) 2022-01-18 16:40:19 +08:00
Fangjun Kuang
273e5fb2f3
Update git SHA1 for transducer_stateless model. (#174) 2022-01-10 11:58:17 +08:00
Fangjun Kuang
4c1b3665ee
Use optimized_transducer to compute transducer loss. (#162)
* WIP: Use optimized_transducer to compute transducer loss.

* Minor fixes.

* Fix decoding.

* Fix decoding.

* Add RESULTS.

* Update RESULTS.

* Update CI.

* Fix sampling rate for yesno recipe.
2022-01-10 11:54:58 +08:00
Fangjun Kuang
413b2e8569
Add git sha1 to RESULTS.md for conformer encoder + stateless decoder. (#160) 2021-12-28 12:04:01 +08:00
Fangjun Kuang
14c93add50
Remove batchnorm, weight decay, and SOS from transducer conformer encoder (#155)
* Remove batchnorm, weight decay, and SOS.

* Make --context-size configurable.

* Update results.
2021-12-27 16:01:10 +08:00
Fangjun Kuang
5b6699a835
Minor fixes to the RNN-T Conformer model (#152)
* Disable weight decay.

* Remove input feature batchnorm..

* Replace BatchNorm in the Conformer model with LayerNorm.

* Use tanh in the joint network.

* Remove sos ID.

* Reduce the number of decoder layers from 4 to 2.

* Minor fixes.

* Fix typos.
2021-12-23 13:54:25 +08:00
Fangjun Kuang
fb6a57e9e0
Increase the size of the context in the RNN-T decoder. (#153) 2021-12-23 07:55:02 +08:00
Fangjun Kuang
1d44da845b
RNN-T Conformer training for LibriSpeech (#143)
* Begin to add RNN-T training for librispeech.

* Copy files from conformer_ctc.

Will edit it.

* Use conformer/transformer model as encoder.

* Begin to add training script.

* Add training code.

* Remove long utterances to avoid OOM when a large max_duraiton is used.

* Begin to add decoding script.

* Add decoding script.

* Minor fixes.

* Add beam search.

* Use LSTM layers for the encoder.

Need more tunings.

* Use stateless decoder.

* Minor fixes to make it ready for merge.

* Fix README.

* Update RESULT.md to include RNN-T Conformer.

* Minor fixes.

* Fix tests.

* Minor fixes.

* Minor fixes.

* Fix tests.
2021-12-18 07:42:51 +08:00
Fangjun Kuang
21096e99d8
Update result for the librispeech recipe using vocab size 500 and att rate 0.8 (#113)
* Update RESULTS using vocab size 500, att rate 0.8

* Update README.

* Refactoring.

Since FSAs in an Nbest object are linear in structure, we can
add the scores of a path to compute the total scores.

* Update documentation.

* Change default vocab size from 5000 to 500.
2021-11-10 14:32:52 +08:00
Fangjun Kuang
4890e27b45
Extract framewise alignment information using CTC decoding (#39)
* Use new APIs with k2.RaggedTensor

* Fix style issues.

* Update the installation doc, saying it requires at least k2 v1.7

* Extract framewise alignment information using CTC decoding.

* Print environment information.

Print information about k2, lhotse, PyTorch, and icefall.

* Fix CI.

* Fix CI.

* Compute framewise alignment information of the LibriSpeech dataset.

* Update comments for the time to compute alignments of train-960.

* Preserve cut id in mix cut transformer.

* Minor fixes.

* Add doc about how to extract framewise alignments.
2021-10-18 14:24:33 +08:00
Fangjun Kuang
707d7017a7
Support pure ctc decoding requiring neither a lexicon nor an n-gram LM (#58)
* Rename lattice_score_scale to nbest_scale.

* Support pure CTC decoding requiring neither a lexicion nor an n-gram LM.

* Fix style issues.

* Fix a typo.

* Minor fixes.
2021-09-26 14:21:49 +08:00
Fangjun Kuang
7f8e3a673a
Add commands for reproducing. (#40)
* Add commands for reproducing.

* Use --bucketing-sampler by default.
2021-09-09 13:50:31 +08:00
Fangjun Kuang
abadc71415
Use new APIs with k2.RaggedTensor (#38)
* Use new APIs with k2.RaggedTensor

* Fix style issues.

* Update the installation doc, saying it requires at least k2 v1.7

* Use k2 v1.7
2021-09-08 14:55:30 +08:00
pkufool
f4223ee110
Add TDNN-LSTM-CTC Results (#25)
* Add tdnn-lstm pretrained model and results

* Add docs for TDNN-LSTM-CTC

* Minor fix

* Fix typo

* Fix style checking
2021-08-24 21:09:27 +08:00
pkufool
ef233486ae
The training script produce WER of 2.57% on librispeech test-clean (#13)
* Add grad_clip and weight-decay, small fix of dataloader and masking

* Add RESULTS.md
2021-08-20 10:08:08 +08:00