mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 05:24:23 +00:00
2.8 KiB
2.8 KiB
Results
IWSLT Tunisian training results (Stateless Pruned Transducer)
2023-06-01
Decoding method | dev WER | test WER | comment |
---|---|---|---|
modified beam search | 47.6 | 51.2 | --epoch 20, --avg 10 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless5/train.py \
--world-size 4 \
--num-epochs 20 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless5/exp \
--max-duration 300 \
--num-buckets 50
The tensorboard training log can be found at https://tensorboard.dev/experiment/yBijWJSPSGuBqMwTZ509lA/
The decoding command is:
for method in modified_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 15 \
--beam-size 20 \
--avg 5 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 400 \
--decoding-method modified_beam_search \
--max-sym-per-frame 1 \
--num-encoder-layers 12 \
--dim-feedforward 1024 \
--nhead 8 \
--encoder-dim 256 \
--decoder-dim 256 \
--joiner-dim 256 \
--use-averaged-model true
done
IWSLT Tunisian training results (Zipformer)
2023-06-01
You can find a pretrained model, training logs, decoding logs, and decoding results at: https://tensorboard.dev/experiment/yLE399ZPTzePG8B39jRyOw/
Decoding method | dev WER | test WER | comment |
---|---|---|---|
modified beam search | 47.6 | 51.2 | --epoch 20, --avg 10 |
To reproduce the above result, use the following commands for training:
Note: the model was trained on V-100 32GB GPU
export CUDA_VISIBLE_DEVICES="0,1"
./zipformer/train.py \
--world-size 2 \
--num-epochs 20 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--causal 0 \
--num-encoder-layers 2,2,2,2,2,2 \
--feedforward-dim 512,768,1024,1536,1024,768 \
--encoder-dim 192,256,384,512,384,256 \
--encoder-unmasked-dim 192,192,256,256,256,192 \
--max-duration 800 \
--prune-range 10
The decoding command is:
for method in modified_beam_search; do
./zipformer/decode.py \
--epoch 20 \
--beam-size 20 \
--avg 13 \
--exp-dir ./zipformer/exp\
--max-duration 800 \
--decoding-method $method \
--num-encoder-layers 2,2,2,2,2,2 \
--feedforward-dim 512,768,1024,1536,1024,768 \
--encoder-dim 192,256,384,512,384,256 \
--encoder-unmasked-dim 192,192,256,256,256,192
--use-averaged-model true
done