# Results ### IWSLT Tunisian training results (Stateless Pruned Transducer) #### 2023-06-01 | Decoding method | dev WER | test WER | comment | |------------------------------------|------------|------------|------------------------------------------| | modified beam search | 47.6 | 51.2 | --epoch 20, --avg 10 | The training command for reproducing is given below: ``` export CUDA_VISIBLE_DEVICES="0,1,2,3" ./pruned_transducer_stateless5/train.py \ --world-size 4 \ --num-epochs 20 \ --start-epoch 1 \ --exp-dir pruned_transducer_stateless5/exp \ --max-duration 300 \ --num-buckets 50 ``` The tensorboard training log can be found at https://tensorboard.dev/experiment/yBijWJSPSGuBqMwTZ509lA/ The decoding command is: ``` for method in modified_beam_search; do ./pruned_transducer_stateless5/decode.py \ --epoch 15 \ --beam-size 20 \ --avg 5 \ --exp-dir ./pruned_transducer_stateless5/exp \ --max-duration 400 \ --decoding-method modified_beam_search \ --max-sym-per-frame 1 \ --num-encoder-layers 12 \ --dim-feedforward 1024 \ --nhead 8 \ --encoder-dim 256 \ --decoder-dim 256 \ --joiner-dim 256 \ --use-averaged-model true done ``` ### IWSLT Tunisian training results (Zipformer) #### 2023-06-01 You can find a pretrained model, training logs, decoding logs, and decoding results at: https://tensorboard.dev/experiment/yLE399ZPTzePG8B39jRyOw/ | Decoding method | dev WER | test WER | comment | |------------------------------------|------------|------------|------------------------------------------| | modified beam search | 47.6 | 51.2 | --epoch 20, --avg 10 | To reproduce the above result, use the following commands for training: # Note: the model was trained on V-100 32GB GPU ``` export CUDA_VISIBLE_DEVICES="0,1" ./zipformer/train.py \ --world-size 2 \ --num-epochs 20 \ --start-epoch 1 \ --use-fp16 1 \ --exp-dir zipformer/exp \ --causal 0 \ --num-encoder-layers 2,2,2,2,2,2 \ --feedforward-dim 512,768,1024,1536,1024,768 \ --encoder-dim 192,256,384,512,384,256 \ --encoder-unmasked-dim 192,192,256,256,256,192 \ --max-duration 800 \ --prune-range 10 ``` The decoding command is: ``` for method in modified_beam_search; do ./zipformer/decode.py \ --epoch 20 \ --beam-size 20 \ --avg 13 \ --exp-dir ./zipformer/exp\ --max-duration 800 \ --decoding-method $method \ --num-encoder-layers 2,2,2,2,2,2 \ --feedforward-dim 512,768,1024,1536,1024,768 \ --encoder-dim 192,256,384,512,384,256 \ --encoder-unmasked-dim 192,192,256,256,256,192 --use-averaged-model true done ```