icefall/egs/aishell/ASR/RESULTS.md

131 lines
4.0 KiB
Markdown

## Results
### Aishell training results (Transducer-stateless)
#### 2021-12-29
(Pingfeng Luo) : The tensorboard log for training is available at <https://tensorboard.dev/experiment/sPEDmAQ3QcWuDAWGiKprVg/>
||test|
|--|--|
|CER| 5.7% |
You can use the following commands to reproduce our results:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8"
./transducer_stateless/train.py \
--bucketing-sampler True \
--world-size 8 \
--lang-dir data/lang_char \
--num-epochs 40 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp_char \
--max-duration 160 \
--lr-factor 3
./transducer_stateless/decode.py \
--epoch 39 \
--avg 10 \
--lang-dir data/lang_char \
--exp-dir transducer_stateless/exp_char \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
```
### Aishell training results (Conformer-MMI)
#### 2021-12-04
(Pingfeng Luo): Result of <https://github.com/k2-fsa/icefall/pull/140>
The tensorboard log for training is available at <https://tensorboard.dev/experiment/PSRYVbptRGynqpPRSykp1g>
And pretrained model is available at <https://huggingface.co/pfluo/icefall_aishell_mmi_model>
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 61 to 85, and using `attention-decoder` decoder with num_paths equals to 100.
||test|
|--|--|
|CER| 4.94% |
||lm_scale|attention_scale|
|--|--|--|
|test|1.1|0.3|
You can use the following commands to reproduce our results:
```bash
git clone https://github.com/k2-fsa/icefall
cd icefall
cd egs/aishell/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8"
python conformer_mmi/train.py --bucketing-sampler True \
--max-duration 200 \
--start-epoch 0 \
--num-epochs 90 \
--world-size 8
python conformer_mmi/decode.py --nbest-scale 0.5 \
--epoch 85 \
--avg 25 \
--method attention-decoder \
--max-duration 20 \
--num-paths 100
```
### Aishell training results (Conformer-CTC)
#### 2021-11-16
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/30
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 60 to 84, and using `attention-decoder` decoder with num_paths equals to 100.
||test|
|--|--|
|CER| 4.26% |
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the CER above are also listed below.
||lm_scale|attention_scale|
|--|--|--|
|test|0.3|0.9|
You can use the following commands to reproduce our results:
```bash
git clone https://github.com/k2-fsa/icefall
cd icefall
cd egs/aishell/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python conformer_ctc/train.py --bucketing-sampler True \
--max-duration 200 \
--start-epoch 0 \
--num-epochs 90 \
--world-size 4
python conformer_ctc/decode.py --nbest-scale 0.5 \
--epoch 84 \
--avg 25 \
--method attention-decoder \
--max-duration 20 \
--num-paths 100
```
### Aishell training results (Tdnn-Lstm)
#### 2021-09-13
(Wei Kang): Result of phone based Tdnn-Lstm model, https://github.com/k2-fsa/icefall/pull/30
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc_lstm_ctc
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 19 to 8, and using `1best` decoding method.
||test|
|--|--|
|CER| 10.16% |