## Results ### Aishell training results (Transducer-stateless) #### 2021-12-29 (Pingfeng Luo) : The tensorboard log for training is available at ||test| |--|--| |CER| 5.7% | You can use the following commands to reproduce our results: ```bash export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8" ./transducer_stateless/train.py \ --bucketing-sampler True \ --world-size 8 \ --lang-dir data/lang_char \ --num-epochs 40 \ --start-epoch 0 \ --exp-dir transducer_stateless/exp_char \ --max-duration 160 \ --lr-factor 3 ./transducer_stateless/decode.py \ --epoch 39 \ --avg 10 \ --lang-dir data/lang_char \ --exp-dir transducer_stateless/exp_char \ --max-duration 100 \ --decoding-method beam_search \ --beam-size 4 ``` ### Aishell training results (Conformer-MMI) #### 2021-12-04 (Pingfeng Luo): Result of The tensorboard log for training is available at And pretrained model is available at The best decoding results (CER) are listed below, we got this results by averaging models from epoch 61 to 85, and using `attention-decoder` decoder with num_paths equals to 100. ||test| |--|--| |CER| 4.94% | ||lm_scale|attention_scale| |--|--|--| |test|1.1|0.3| You can use the following commands to reproduce our results: ```bash git clone https://github.com/k2-fsa/icefall cd icefall cd egs/aishell/ASR ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7,8" python conformer_mmi/train.py --bucketing-sampler True \ --max-duration 200 \ --start-epoch 0 \ --num-epochs 90 \ --world-size 8 python conformer_mmi/decode.py --nbest-scale 0.5 \ --epoch 85 \ --avg 25 \ --method attention-decoder \ --max-duration 20 \ --num-paths 100 ``` ### Aishell training results (Conformer-CTC) #### 2021-11-16 (Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/30 Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc The best decoding results (CER) are listed below, we got this results by averaging models from epoch 60 to 84, and using `attention-decoder` decoder with num_paths equals to 100. ||test| |--|--| |CER| 4.26% | To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the CER above are also listed below. ||lm_scale|attention_scale| |--|--|--| |test|0.3|0.9| You can use the following commands to reproduce our results: ```bash git clone https://github.com/k2-fsa/icefall cd icefall cd egs/aishell/ASR ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1,2,3" python conformer_ctc/train.py --bucketing-sampler True \ --max-duration 200 \ --start-epoch 0 \ --num-epochs 90 \ --world-size 4 python conformer_ctc/decode.py --nbest-scale 0.5 \ --epoch 84 \ --avg 25 \ --method attention-decoder \ --max-duration 20 \ --num-paths 100 ``` ### Aishell training results (Tdnn-Lstm) #### 2021-09-13 (Wei Kang): Result of phone based Tdnn-Lstm model, https://github.com/k2-fsa/icefall/pull/30 Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc_lstm_ctc The best decoding results (CER) are listed below, we got this results by averaging models from epoch 19 to 8, and using `1best` decoding method. ||test| |--|--| |CER| 10.16% |