Fangjun Kuang fba5e67d5e
Fix CI tests. (#1974)
- Introduce unified AMP helpers (create_grad_scaler, torch_autocast) to handle 
  deprecations in PyTorch ≥2.3.0

- Replace direct uses of torch.cuda.amp.GradScaler and torch.cuda.amp.autocast 
  with the new utilities across all training and inference scripts

- Update all torch.load calls to include weights_only=False for compatibility with 
  newer PyTorch versions
2025-07-01 13:47:55 +08:00
..
2022-11-17 09:42:17 -05:00
2022-03-02 16:41:14 +08:00
2023-03-08 22:56:04 +08:00
2022-04-22 15:54:59 +08:00
2022-03-02 16:41:14 +08:00
2025-07-01 13:47:55 +08:00
2022-11-17 09:42:17 -05:00
2022-03-02 16:41:14 +08:00

Introduction

The encoder consists of Conformer layers in this folder. You can use the following command to start the training:

cd egs/librispeech/ASR

export CUDA_VISIBLE_DEVICES="0,1,2,3"

./transducer/train.py \
  --world-size 4 \
  --num-epochs 30 \
  --start-epoch 0 \
  --exp-dir transducer/exp \
  --full-libri 1 \
  --max-duration 250 \
  --lr-factor 2.5