mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Disable weight decay. * Remove input feature batchnorm.. * Replace BatchNorm in the Conformer model with LayerNorm. * Use tanh in the joint network. * Remove sos ID. * Reduce the number of decoder layers from 4 to 2. * Minor fixes. * Fix typos.
68 lines
1.8 KiB
Python
Executable File
68 lines
1.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
To run this file, do:
|
|
|
|
cd icefall/egs/librispeech/ASR
|
|
python ./transducer/test_decoder.py
|
|
"""
|
|
|
|
import torch
|
|
from decoder import Decoder
|
|
|
|
|
|
def test_decoder():
|
|
vocab_size = 3
|
|
blank_id = 0
|
|
embedding_dim = 128
|
|
num_layers = 2
|
|
hidden_dim = 6
|
|
output_dim = 8
|
|
N = 3
|
|
U = 5
|
|
|
|
decoder = Decoder(
|
|
vocab_size=vocab_size,
|
|
embedding_dim=embedding_dim,
|
|
blank_id=blank_id,
|
|
num_layers=num_layers,
|
|
hidden_dim=hidden_dim,
|
|
output_dim=output_dim,
|
|
embedding_dropout=0.0,
|
|
rnn_dropout=0.0,
|
|
)
|
|
x = torch.randint(1, vocab_size, (N, U))
|
|
decoder_out, (h, c) = decoder(x)
|
|
|
|
assert decoder_out.shape == (N, U, output_dim)
|
|
assert h.shape == (num_layers, N, hidden_dim)
|
|
assert c.shape == (num_layers, N, hidden_dim)
|
|
|
|
decoder_out, (h, c) = decoder(x, (h, c))
|
|
assert decoder_out.shape == (N, U, output_dim)
|
|
assert h.shape == (num_layers, N, hidden_dim)
|
|
assert c.shape == (num_layers, N, hidden_dim)
|
|
|
|
|
|
def main():
|
|
test_decoder()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|