2022-11-17 09:42:17 -05:00

218 lines
7.1 KiB
Python

# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
from model import Transducer
def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
"""
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
device = model.device
sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(1, 1)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
hyp = []
sym_per_frame = 0
sym_per_utt = 0
max_sym_per_utt = 1000
max_sym_per_frame = 3
while t < T and sym_per_utt < max_sym_per_utt:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
logits = model.joiner(current_encoder_out, decoder_out)
# logits is (1, 1, 1, vocab_size)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
# TODO: Use logits.argmax()
y = log_prob.argmax()
if y != blank_id:
hyp.append(y.item())
y = y.reshape(1, 1)
decoder_out, (h, c) = model.decoder(y, (h, c))
sym_per_utt += 1
sym_per_frame += 1
if y == blank_id or sym_per_frame > max_sym_per_frame:
sym_per_frame = 0
t += 1
return hyp
@dataclass
class Hypothesis:
ys: List[int] # the predicted sequences so far
log_prob: float # The log prob of ys
# Optional decoder state. We assume it is LSTM for now,
# so the state is a tuple (h, c)
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 5,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
device = model.device
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
max_u = 20000 # terminate after this number of steps
u = 0
cache: Dict[str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = {}
while t < T and u < max_u:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
A = B
B = []
# for hyp in A:
# for h in A:
# if h.ys == hyp.ys[:-1]:
# # update the score of hyp
# decoder_input = torch.tensor(
# [h.ys[-1]], device=device
# ).reshape(1, 1)
# decoder_out, _ = model.decoder(
# decoder_input, h.decoder_state
# )
# logits = model.joiner(current_encoder_out, decoder_out)
# log_prob = logits.log_softmax(dim=-1)
# log_prob = log_prob.squeeze()
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
while u < max_u:
y_star = max(A, key=lambda hyp: hyp.log_prob)
A.remove(y_star)
# Note: y_star.ys is unhashable, i.e., cannot be used
# as a key into a dict
cached_key = "_".join(map(str, y_star.ys))
if cached_key not in cache:
decoder_input = torch.tensor([y_star.ys[-1]], device=device).reshape(
1, 1
)
decoder_out, decoder_state = model.decoder(
decoder_input,
y_star.decoder_state,
)
cache[cached_key] = (decoder_out, decoder_state)
else:
decoder_out, decoder_state = cache[cached_key]
logits = model.joiner(current_encoder_out, decoder_out)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)
# If we choose blank here, add the new hypothesis to B.
# Otherwise, add the new hypothesis to A
# First, choose blank
skip_log_prob = log_prob[blank_id]
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
# ys[:] returns a copy of ys
new_y_star = Hypothesis(
ys=y_star.ys[:],
log_prob=new_y_star_log_prob,
# Caution: Use y_star.decoder_state here
decoder_state=y_star.decoder_state,
)
B.append(new_y_star)
# Second, choose other labels
for i, v in enumerate(log_prob.tolist()):
if i == blank_id:
continue
new_ys = y_star.ys + [i]
new_log_prob = y_star.log_prob + v
new_hyp = Hypothesis(
ys=new_ys,
log_prob=new_log_prob,
decoder_state=decoder_state,
)
A.append(new_hyp)
u += 1
# check whether B contains more than "beam" elements more probable
# than the most probable in A
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
B = sorted(
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
key=lambda hyp: hyp.log_prob,
reverse=True,
)
if len(B) >= beam:
B = B[:beam]
break
t += 1
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
ys = best_hyp.ys[1:] # [1:] to remove the blank
return ys