icefall/egs/gigaspeech/ASR/RESULTS.md
Yifan Yang 416852e8a1
Add Zipformer recipe for GigaSpeech (#1254)
Co-authored-by: Yifan Yang <yifanyeung@qq.com>
Co-authored-by: yfy62 <yfy62@d3-hpc-sjtu-test-005.cm.cluster>
2023-10-21 15:36:59 +08:00

227 lines
5.9 KiB
Markdown

## Results
### zipformer (zipformer + pruned stateless transducer)
See <https://github.com/k2-fsa/icefall/pull/1254> for more details.
[zipformer](./zipformer)
- Non-streaming
- normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M
You can find a pretrained model, training logs, decoding logs, and decoding results at:
<https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17>
The tensorboard log for training is available at
<https://wandb.ai/yifanyeung/icefall-asr-gigaspeech-zipformer-2023-10-20>
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
| decoding method | test-clean | test-other | comment |
|----------------------|------------|------------|--------------------|
| greedy_search | 10.31 | 10.50 | --epoch 30 --avg 9 |
| modified_beam_search | 10.25 | 10.38 | --epoch 30 --avg 9 |
| fast_beam_search | 10.26 | 10.48 | --epoch 30 --avg 9 |
The training command is:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--causal 0 \
--subset XL \
--max-duration 700 \
--use-transducer 1 \
--use-ctc 0 \
--lr-epochs 1 \
--master-port 12345
```
The decoding command is:
```bash
export CUDA_VISIBLE_DEVICES=0
# greedy search
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method greedy_search
# modified beam search
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4
# fast beam search (one best)
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
```
### GigaSpeech BPE training results (Pruned Transducer 2)
#### 2022-05-12
#### Conformer encoder + embedding decoder
Conformer encoder + non-recurrent decoder. The encoder is a
reworked version of the conformer encoder, with many changes. The
decoder contains only an embedding layer, a Conv1d (with kernel
size 2) and a linear layer (to transform tensor dim). k2 pruned
RNN-T loss is used.
The best WER, as of 2022-05-12, for the gigaspeech is below
Results are:
| | Dev | Test |
|----------------------|-------|-------|
| greedy search | 10.51 | 10.73 |
| fast beam search | 10.50 | 10.69 |
| modified beam search | 10.40 | 10.51 |
To reproduce the above result, use the following commands for training:
```bash
cd egs/gigaspeech/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--max-duration 120 \
--num-workers 1 \
--world-size 8 \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--use-fp16 True
```
and the following commands for decoding:
```bash
# greedy search
./pruned_transducer_stateless2/decode.py \
--iter 3488000 \
--avg 20 \
--decoding-method greedy_search \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 600
# fast beam search
./pruned_transducer_stateless2/decode.py \
--iter 3488000 \
--avg 20 \
--decoding-method fast_beam_search \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 600
# modified beam search
./pruned_transducer_stateless2/decode.py \
--iter 3488000 \
--avg 15 \
--decoding-method modified_beam_search \
--exp-dir pruned_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 600
```
Pretrained model is available at
<https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2>
The tensorboard log for training is available at
<https://tensorboard.dev/experiment/zmmM0MLASnG1N2RmJ4MZBw/>
### GigaSpeech BPE training results (Conformer-CTC)
#### 2022-04-06
The best WER, as of 2022-04-06, for the gigaspeech is below
Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring:
| | Dev | Test |
|-----|-------|-------|
| WER | 10.47 | 10.58 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.5 | 1.3 |
To reproduce the above result, use the following commands for training:
```bash
cd egs/gigaspeech/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./conformer_ctc/train.py \
--max-duration 120 \
--num-workers 1 \
--world-size 8 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500
```
and the following command for decoding:
```bash
./conformer_ctc/decode.py \
--epoch 18 \
--avg 6 \
--method attention-decoder \
--num-paths 1000 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500 \
--max-duration 20 \
--num-workers 1
```
Results using HLG decoding + whole lattice rescoring:
| | Dev | Test |
|-----|-------|-------|
| WER | 10.51 | 10.62 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| lm_scale |
|----------|
| 0.2 |
To reproduce the above result, use the training commands above, and the following command for decoding:
```bash
./conformer_ctc/decode.py \
--epoch 18 \
--avg 6 \
--method whole-lattice-rescoring \
--num-paths 1000 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500 \
--max-duration 20 \
--num-workers 1
```
Note: the `whole-lattice-rescoring` method is about twice as fast as the `attention-decoder` method, with slightly worse WER.
Pretrained model is available at
<https://huggingface.co/wgb14/icefall-asr-gigaspeech-conformer-ctc>
The tensorboard log for training is available at
<https://tensorboard.dev/experiment/rz63cmJXSK2fV9GceJtZXQ/>