Add Zipformer recipe for GigaSpeech (#1254)

Co-authored-by: Yifan Yang <yifanyeung@qq.com>
Co-authored-by: yfy62 <yfy62@d3-hpc-sjtu-test-005.cm.cluster>
This commit is contained in:
Yifan Yang 2023-10-21 02:36:59 -05:00 committed by GitHub
parent eef47adee9
commit 416852e8a1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
43 changed files with 6036 additions and 2 deletions

View File

@ -0,0 +1,94 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/gigaspeech/ASR
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
log "Downloading pre-trained model from $repo_url"
git lfs install
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "data/lang_bpe_500/tokens.txt"
git lfs pull --include "exp/jit_script.pt"
git lfs pull --include "exp/pretrained.pt"
ln -s pretrained.pt epoch-99.pt
ls -lh *.pt
popd
log "Export to torchscript model"
./zipformer/export.py \
--exp-dir $repo/exp \
--use-averaged-model false \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
ls -lh $repo/exp/*.pt
log "Decode with models exported by torch.jit.script()"
./zipformer/jit_pretrained.py \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--nn-model-filename $repo/exp/jit_script.pt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
for method in greedy_search modified_beam_search fast_beam_search; do
log "$method"
./zipformer/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p zipformer/exp
ln -s $PWD/$repo/exp/pretrained.pt zipformer/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh zipformer/exp
log "Decoding test-clean and test-other"
# use a small value for decoding with CPU
max_duration=100
for method in greedy_search fast_beam_search modified_beam_search; do
log "Decoding with $method"
./zipformer/decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--use-averaged-model 0 \
--max-duration $max_duration \
--exp-dir zipformer/exp
done
rm zipformer/exp/*.pt
fi

View File

@ -0,0 +1,126 @@
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-gigaspeech-zipformer-2023-10-17
# zipformer
on:
push:
branches:
- master
pull_request:
types: [labeled]
schedule:
# minute (0-59)
# hour (0-23)
# day of the month (1-31)
# month (1-12)
# day of the week (0-6)
# nightly build at 15:50 UTC time every day
- cron: "50 15 * * *"
concurrency:
group: run_gigaspeech_2023_10_17_zipformer-${{ github.ref }}
cancel-in-progress: true
jobs:
run_gigaspeech_2023_10_17_zipformer:
if: github.event.label.name == 'zipformer' ||github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.8]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
mkdir -p egs/gigaspeech/ASR/data
ln -sfv ~/tmp/fbank-libri egs/gigaspeech/ASR/data/fbank
ls -lh egs/gigaspeech/ASR/data/*
sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
- name: Display decoding results for gigaspeech zipformer
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
shell: bash
run: |
cd egs/gigaspeech/ASR/
tree ./zipformer/exp
cd zipformer
echo "results for zipformer"
echo "===greedy search==="
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===fast_beam_search==="
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified beam search==="
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for gigaspeech zipformer
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-zipformer-2022-11-11
path: egs/gigaspeech/ASR/zipformer/exp/

View File

@ -148,8 +148,11 @@ in the decoding.
### GigaSpeech
We provide two models for this recipe: [Conformer CTC model][GigaSpeech_conformer_ctc]
and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
We provide three models for this recipe:
- [Conformer CTC model][GigaSpeech_conformer_ctc]
- [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
- [Transducer: Zipformer encoder + Embedding decoder][GigaSpeech_zipformer]
#### Conformer CTC
@ -165,6 +168,14 @@ and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned R
| fast beam search | 10.50 | 10.69 |
| modified beam search | 10.40 | 10.51 |
#### Transducer: Zipformer encoder + Embedding decoder
| | Dev | Test |
|----------------------|-------|-------|
| greedy search | 10.31 | 10.50 |
| fast beam search | 10.26 | 10.48 |
| modified beam search | 10.25 | 10.38 |
### Aishell
@ -378,6 +389,7 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad
[TED-LIUM3_pruned_transducer_stateless]: egs/tedlium3/ASR/pruned_transducer_stateless
[GigaSpeech_conformer_ctc]: egs/gigaspeech/ASR/conformer_ctc
[GigaSpeech_pruned_transducer_stateless2]: egs/gigaspeech/ASR/pruned_transducer_stateless2
[GigaSpeech_zipformer]: egs/gigaspeech/ASR/zipformer
[Aidatatang_200zh_pruned_transducer_stateless2]: egs/aidatatang_200zh/ASR/pruned_transducer_stateless2
[WenetSpeech_pruned_transducer_stateless2]: egs/wenetspeech/ASR/pruned_transducer_stateless2
[WenetSpeech_pruned_transducer_stateless5]: egs/wenetspeech/ASR/pruned_transducer_stateless5

View File

@ -15,6 +15,7 @@ ln -sfv /path/to/GigaSpeech download/GigaSpeech
## Performance Record
| | Dev | Test |
|--------------------------------|-------|-------|
| `zipformer` | 10.25 | 10.38 |
| `conformer_ctc` | 10.47 | 10.58 |
| `pruned_transducer_stateless2` | 10.40 | 10.51 |

View File

@ -1,4 +1,78 @@
## Results
### zipformer (zipformer + pruned stateless transducer)
See <https://github.com/k2-fsa/icefall/pull/1254> for more details.
[zipformer](./zipformer)
- Non-streaming
- normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M
You can find a pretrained model, training logs, decoding logs, and decoding results at:
<https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17>
The tensorboard log for training is available at
<https://wandb.ai/yifanyeung/icefall-asr-gigaspeech-zipformer-2023-10-20>
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
| decoding method | test-clean | test-other | comment |
|----------------------|------------|------------|--------------------|
| greedy_search | 10.31 | 10.50 | --epoch 30 --avg 9 |
| modified_beam_search | 10.25 | 10.38 | --epoch 30 --avg 9 |
| fast_beam_search | 10.26 | 10.48 | --epoch 30 --avg 9 |
The training command is:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--causal 0 \
--subset XL \
--max-duration 700 \
--use-transducer 1 \
--use-ctc 0 \
--lr-epochs 1 \
--master-port 12345
```
The decoding command is:
```bash
export CUDA_VISIBLE_DEVICES=0
# greedy search
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method greedy_search
# modified beam search
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method modified_beam_search \
--beam-size 4
# fast beam search (one best)
./zipformer/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
```
### GigaSpeech BPE training results (Pruned Transducer 2)
#### 2022-05-12

View File

@ -0,0 +1,444 @@
# Copyright 2021 Piotr Żelasko
# Copyright 2023 Xiaomi Corporation (Author: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import inspect
import logging
import re
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import lhotse
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.dataset import (
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import AudioSamples, OnTheFlyFeatures
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class GigaSpeechAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
# GigaSpeech specific arguments
group.add_argument(
"--subset",
type=str,
default="XL",
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
)
group.add_argument(
"--small-dev",
type=str2bool,
default=False,
help="Should we use only 1000 utterances for dev (speeds up training)",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
input_strategy=eval(self.args.input_strategy)(),
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=self.args.drop_last,
)
else:
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info(f"About to get train {self.args.subset} cuts")
if self.args.subset == "XL":
filenames = glob.glob(
f"{self.args.manifest_dir}/XL_split/gigaspeech_cuts_XL.*.jsonl.gz"
)
pattern = re.compile(r"gigaspeech_cuts_XL.([0-9]+).jsonl.gz")
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
sorted_filenames = [f[1] for f in idx_filenames]
logging.info(
f"Loading GigaSpeech {len(sorted_filenames)} splits in lazy mode"
)
cuts_train = lhotse.combine(
lhotse.load_manifest_lazy(p) for p in sorted_filenames
)
else:
path = (
self.args.manifest_dir / f"gigaspeech_cuts_{self.args.subset}.jsonl.gz"
)
cuts_train = CutSet.from_jsonl_lazy(path)
return cuts_train
@lru_cache()
def dev_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
cuts_valid = load_manifest_lazy(
self.args.manifest_dir / "gigaspeech_cuts_DEV.jsonl.gz"
)
if self.args.small_dev:
return cuts_valid.subset(first=1000)
else:
return cuts_valid
@lru_cache()
def test_cuts(self) -> CutSet:
logging.info("About to get test cuts")
return load_manifest_lazy(
self.args.manifest_dir / "gigaspeech_cuts_TEST.jsonl.gz"
)

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py

View File

@ -0,0 +1,847 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Liyong Guo,
# Quandong Wang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) ctc-decoding
./zipformer/ctc_decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./zipformer/exp \
--use-ctc 1 \
--max-duration 600 \
--decoding-method ctc-decoding
(2) 1best
./zipformer/ctc_decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./zipformer/exp \
--use-ctc 1 \
--max-duration 600 \
--hlg-scale 0.6 \
--decoding-method 1best
(3) nbest
./zipformer/ctc_decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./zipformer/exp \
--use-ctc 1 \
--max-duration 600 \
--hlg-scale 0.6 \
--decoding-method nbest
(4) nbest-rescoring
./zipformer/ctc_decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./zipformer/exp \
--use-ctc 1 \
--max-duration 600 \
--hlg-scale 0.6 \
--nbest-scale 1.0 \
--lm-dir data/lm \
--decoding-method nbest-rescoring
(5) whole-lattice-rescoring
./zipformer/ctc_decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./zipformer/exp \
--use-ctc 1 \
--max-duration 600 \
--hlg-scale 0.6 \
--nbest-scale 1.0 \
--lm-dir data/lm \
--decoding-method whole-lattice-rescoring
"""
import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import GigaSpeechAsrDataModule
from train import add_model_arguments, get_params, get_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.decode import (
get_lattice,
nbest_decoding,
nbest_oracle,
one_best_decoding,
rescore_with_n_best_list,
rescore_with_whole_lattice,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
get_texts,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--decoding-method",
type=str,
default="ctc-decoding",
help="""Decoding method.
Supported values are:
- (1) ctc-decoding. Use CTC decoding. It uses a sentence piece
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
It needs neither a lexicon nor an n-gram LM.
- (2) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (3) nbest. Extract n paths from the decoding lattice; the path
with the highest score is the decoding result.
- (4) nbest-rescoring. Extract n paths from the decoding lattice,
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
the highest score is the decoding result.
- (5) whole-lattice-rescoring. Rescore the decoding lattice with an
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
is the decoding result.
you have trained an RNN LM using ./rnn_lm/train.py
- (6) nbest-oracle. Its WER is the lower bound of any n-best
rescoring method can achieve. Useful for debugging n-best
rescoring method.
""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for n-best based decoding method.
Used only when "method" is one of the following values:
nbest, nbest-rescoring, and nbest-oracle
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=1.0,
help="""The scale to be applied to `lattice.scores`.
It's needed if you use any kinds of n-best based rescoring.
Used only when "method" is one of the following values:
nbest, nbest-rescoring, and nbest-oracle
A smaller value results in more unique paths.
""",
)
parser.add_argument(
"--hlg-scale",
type=float,
default=0.6,
help="""The scale to be applied to `hlg.scores`.
""",
)
parser.add_argument(
"--lm-dir",
type=str,
default="data/lm",
help="""The n-gram LM dir.
It should contain either G_4_gram.pt or G_4_gram.fst.txt
""",
)
add_model_arguments(parser)
return parser
def get_decoding_params() -> AttributeDict:
"""Parameters for decoding."""
params = AttributeDict(
{
"frame_shift_ms": 10,
"search_beam": 20,
"output_beam": 8,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
}
)
return params
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
batch: dict,
word_table: k2.SymbolTable,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if no rescoring is used, the key is the string `no_rescore`.
If LM rescoring is used, the key is the string `lm_scale_xxx`,
where `xxx` is the value of `lm_scale`. An example key is
`lm_scale_0.7`
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
- params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
- params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
- params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring.
- params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM
rescoring.
model:
The neural model.
HLG:
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.decoding_method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.decoding_method is ctc-decoding.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
G:
An LM. It is not None when params.decoding_method is "nbest-rescoring"
or "whole-lattice-rescoring". In general, the G in HLG
is a 3-gram LM, while this G is a 4-gram LM.
Returns:
Return the decoding result. See above description for the format of
the returned dict. Note: If it decodes to nothing, then return None.
"""
if HLG is not None:
device = HLG.device
else:
device = H.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
if params.causal:
# this seems to cause insertions at the end of the utterance if used with zipformer.
pad_len = 30
feature_lens += pad_len
feature = torch.nn.functional.pad(
feature,
pad=(0, 0, 0, pad_len),
value=LOG_EPS,
)
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
supervision_segments = torch.stack(
(
supervisions["sequence_idx"],
torch.div(
supervisions["start_frame"],
params.subsampling_factor,
rounding_mode="floor",
),
torch.div(
supervisions["num_frames"],
params.subsampling_factor,
rounding_mode="floor",
),
),
1,
).to(torch.int32)
if H is None:
assert HLG is not None
decoding_graph = HLG
else:
assert HLG is None
assert bpe_model is not None
decoding_graph = H
lattice = get_lattice(
nnet_output=ctc_output,
decoding_graph=decoding_graph,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
if params.decoding_method == "ctc-decoding":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
# Note: `best_path.aux_labels` contains token IDs, not word IDs
# since we are using H, not HLG here.
#
# token_ids is a lit-of-list of IDs
token_ids = get_texts(best_path)
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
key = "ctc-decoding"
return {key: hyps}
if params.decoding_method == "nbest-oracle":
# Note: You can also pass rescored lattices to it.
# We choose the HLG decoded lattice for speed reasons
# as HLG decoding is faster and the oracle WER
# is only slightly worse than that of rescored lattices.
best_path = nbest_oracle(
lattice=lattice,
num_paths=params.num_paths,
ref_texts=supervisions["text"],
word_table=word_table,
nbest_scale=params.nbest_scale,
oov="<UNK>",
)
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
return {key: hyps}
if params.decoding_method in ["1best", "nbest"]:
if params.decoding_method == "1best":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
key = "no_rescore"
else:
best_path = nbest_decoding(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
return {key: hyps}
assert params.decoding_method in [
"nbest-rescoring",
"whole-lattice-rescoring",
]
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
if params.decoding_method == "nbest-rescoring":
best_path_dict = rescore_with_n_best_list(
lattice=lattice,
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
nbest_scale=params.nbest_scale,
)
elif params.decoding_method == "whole-lattice-rescoring":
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=lm_scale_list,
)
else:
assert False, f"Unsupported decoding method: {params.decoding_method}"
ans = dict()
if best_path_dict is not None:
for lm_scale_str, best_path in best_path_dict.items():
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
ans[lm_scale_str] = hyps
else:
ans = None
return ans
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
word_table: k2.SymbolTable,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
HLG:
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.decoding_method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.decoding_method is ctc-decoding.
word_table:
It is the word symbol table.
G:
An LM. It is not None when params.decoding_method is "nbest-rescoring"
or "whole-lattice-rescoring". In general, the G in HLG
is a 3-gram LM, while this G is a 4-gram LM.
Returns:
Return a dict, whose key may be "no-rescore" if no LM rescoring
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
batch=batch,
word_table=word_table,
G=G,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % 100 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
GigaSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
args.lm_dir = Path(args.lm_dir)
params = get_params()
# add decoding params
params.update(get_decoding_params())
params.update(vars(args))
assert params.decoding_method in (
"ctc-decoding",
"1best",
"nbest",
"nbest-rescoring",
"whole-lattice-rescoring",
"nbest-oracle",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
logging.info(params)
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
params.vocab_size = num_classes
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = 0
if params.decoding_method == "ctc-decoding":
HLG = None
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(str(params.lang_dir / "bpe.model"))
else:
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
)
assert HLG.requires_grad is False
HLG.scores *= params.hlg_scale
if not hasattr(HLG, "lm_scores"):
HLG.lm_scores = HLG.scores.clone()
if params.decoding_method in (
"nbest-rescoring",
"whole-lattice-rescoring",
):
if not (params.lm_dir / "G_4_gram.pt").is_file():
logging.info("Loading G_4_gram.fst.txt")
logging.warning("It may take 8 minutes.")
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
first_word_disambig_id = lexicon.word_table["#0"]
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
# G.aux_labels is not needed in later computations, so
# remove it here.
del G.aux_labels
# CAUTION: The following line is crucial.
# Arcs entering the back-off state have label equal to #0.
# We have to change it to 0 here.
G.labels[G.labels >= first_word_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set G.properties to None
G.__dict__["_properties"] = None
G = k2.Fsa.from_fsas([G]).to(device)
G = k2.arc_sort(G)
# Save a dummy value so that it can be loaded in C++.
# See https://github.com/pytorch/pytorch/issues/67902
# for why we need to do this.
G.dummy = 1
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
G = k2.Fsa.from_dict(d)
if params.decoding_method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
G = G.to(device)
# G.lm_scores is used to replace HLG.lm_scores during
# LM rescoring.
G.lm_scores = G.scores.clone()
else:
G = None
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
gigaspeech = GigaSpeechAsrDataModule(args)
test_clean_cuts = gigaspeech.test_clean_cuts()
test_other_cuts = gigaspeech.test_other_cuts()
test_clean_dl = gigaspeech.test_dataloaders(test_clean_cuts)
test_other_dl = gigaspeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
word_table=lexicon.word_table,
G=G,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/decode_stream.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/decoder.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/transducer_stateless/encoder_interface.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/export-onnx-ctc.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/export-onnx-streaming.py

View File

@ -0,0 +1,620 @@
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang, Wei Kang)
# Copyright 2023 Danqing Fu (danqing.fu@gmail.com)
"""
This script exports a transducer model from PyTorch to ONNX.
We use the pre-trained model from
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/gigaspeech/ASR
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model to ONNX
./zipformer/export-onnx.py \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--exp-dir $repo/exp \
--num-encoder-layers "2,2,3,4,3,2" \
--downsampling-factor "1,2,4,8,4,2" \
--feedforward-dim "512,768,1024,1536,1024,768" \
--num-heads "4,4,4,8,4,4" \
--encoder-dim "192,256,384,512,384,256" \
--query-head-dim 32 \
--value-head-dim 12 \
--pos-head-dim 4 \
--pos-dim 48 \
--encoder-unmasked-dim "192,192,256,256,256,192" \
--cnn-module-kernel "31,31,15,15,15,31" \
--decoder-dim 512 \
--joiner-dim 512 \
--causal False \
--chunk-size "16,32,64,-1" \
--left-context-frames "64,128,256,-1"
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
See ./onnx_pretrained.py and ./onnx_check.py for how to
use the exported ONNX models.
"""
import argparse
import logging
from pathlib import Path
from typing import Dict, Tuple
import k2
import onnx
import torch
import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_model, get_params
from zipformer import Zipformer2
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import make_pad_mask, num_tokens, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--tokens",
type=str,
default="data/lang_bpe_500/tokens.txt",
help="Path to the tokens.txt",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = value
onnx.save(model, filename)
class OnnxEncoder(nn.Module):
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
def __init__(
self, encoder: Zipformer2, encoder_embed: nn.Module, encoder_proj: nn.Linear
):
"""
Args:
encoder:
A Zipformer encoder.
encoder_proj:
The projection layer for encoder from the joiner.
"""
super().__init__()
self.encoder = encoder
self.encoder_embed = encoder_embed
self.encoder_proj = encoder_proj
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Please see the help information of Zipformer.forward
Args:
x:
A 3-D tensor of shape (N, T, C)
x_lens:
A 1-D tensor of shape (N,). Its dtype is torch.int64
Returns:
Return a tuple containing:
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
- encoder_out_lens, A 1-D tensor of shape (N,)
"""
x, x_lens = self.encoder_embed(x, x_lens)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2)
encoder_out = self.encoder_proj(encoder_out)
# Now encoder_out is of shape (N, T, joiner_dim)
return encoder_out, encoder_out_lens
class OnnxDecoder(nn.Module):
"""A wrapper for Decoder and the decoder_proj from the joiner"""
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
super().__init__()
self.decoder = decoder
self.decoder_proj = decoder_proj
def forward(self, y: torch.Tensor) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, context_size).
Returns
Return a 2-D tensor of shape (N, joiner_dim)
"""
need_pad = False
decoder_output = self.decoder(y, need_pad=need_pad)
decoder_output = decoder_output.squeeze(1)
output = self.decoder_proj(decoder_output)
return output
class OnnxJoiner(nn.Module):
"""A wrapper for the joiner"""
def __init__(self, output_linear: nn.Linear):
super().__init__()
self.output_linear = output_linear
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))
return logit
def export_encoder_model_onnx(
encoder_model: OnnxEncoder,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
and it has two outputs:
- encoder_out, a tensor of shape (N, T', joiner_dim)
- encoder_out_lens, a tensor of shape (N,)
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
encoder_model = torch.jit.trace(encoder_model, (x, x_lens))
torch.onnx.export(
encoder_model,
(x, x_lens),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens"],
output_names=["encoder_out", "encoder_out_lens"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
},
)
meta_data = {
"model_type": "zipformer2",
"version": "1",
"model_author": "k2-fsa",
"comment": "non-streaming zipformer2",
}
logging.info(f"meta_data: {meta_data}")
add_meta_data(filename=encoder_filename, meta_data=meta_data)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
context_size = decoder_model.decoder.context_size
vocab_size = decoder_model.decoder.vocab_size
y = torch.zeros(10, context_size, dtype=torch.int64)
decoder_model = torch.jit.script(decoder_model)
torch.onnx.export(
decoder_model,
y,
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
meta_data = {
"context_size": str(context_size),
"vocab_size": str(vocab_size),
}
add_meta_data(filename=decoder_filename, meta_data=meta_data)
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- encoder_out: a tensor of shape (N, joiner_dim)
- decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
"""
joiner_dim = joiner_model.output_linear.weight.shape[1]
logging.info(f"joiner dim: {joiner_dim}")
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"encoder_out",
"decoder_out",
],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
meta_data = {
"joiner_dim": str(joiner_dim),
}
add_meta_data(filename=joiner_filename, meta_data=meta_data)
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
token_table = k2.SymbolTable.from_file(params.tokens)
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1
logging.info(params)
logging.info("About to create model")
model = get_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
encoder = OnnxEncoder(
encoder=model.encoder,
encoder_embed=model.encoder_embed,
encoder_proj=model.joiner.encoder_proj,
)
decoder = OnnxDecoder(
decoder=model.decoder,
decoder_proj=model.joiner.decoder_proj,
)
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
if params.iter > 0:
suffix = f"iter-{params.iter}"
else:
suffix = f"epoch-{params.epoch}"
suffix += f"-avg-{params.avg}"
opset_version = 13
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
export_encoder_model_onnx(
encoder,
encoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported encoder to {encoder_filename}")
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
export_decoder_model_onnx(
decoder,
decoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported decoder to {decoder_filename}")
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
export_joiner_model_onnx(
joiner,
joiner_filename,
opset_version=opset_version,
)
logging.info(f"Exported joiner to {joiner_filename}")
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
logging.info("Generate int8 quantization models")
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
model_output=encoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=decoder_filename,
model_output=decoder_filename_int8,
op_types_to_quantize=["MatMul", "Gather"],
weight_type=QuantType.QInt8,
)
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
quantize_dynamic(
model_input=joiner_filename,
model_output=joiner_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,522 @@
#!/usr/bin/env python3
#
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
Note: This is a example for gigaspeech dataset, if you are using different
dataset, you should change the argument values according to your dataset.
(1) Export to torchscript model using torch.jit.script()
- For non-streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9 \
--jit 1
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
load it by `torch.jit.load("jit_script.pt")`.
Check ./jit_pretrained.py for its usage.
Check https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
- For streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9 \
--jit 1
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
Check ./jit_pretrained_streaming.py for its usage.
Check https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
(2) Export `model.state_dict()`
- For non-streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9
- For streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.
- For non-streaming model:
To use the generated file with `zipformer/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/gigaspeech/ASR
./zipformer/decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
- For streaming model:
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/gigaspeech/ASR
# simulated streaming decoding
./zipformer/decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
# chunk-wise streaming decoding
./zipformer/streaming_decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
Check ./pretrained.py for its usage.
Note: If you don't want to train a model from scratch, we have
provided one for you. You can get it at
- non-streaming model:
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
with the following commands:
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
# You will find the pre-trained models in exp dir
"""
import argparse
import logging
from pathlib import Path
from typing import List, Tuple
import k2
import torch
from scaling_converter import convert_scaled_to_non_scaled
from torch import Tensor, nn
from train import add_model_arguments, get_model, get_params
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import make_pad_mask, num_tokens, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--tokens",
type=str,
default="data/lang_bpe_500/tokens.txt",
help="Path to the tokens.txt",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate a file named jit_script.pt.
Check ./jit_pretrained.py for how to use it.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
class EncoderModel(nn.Module):
"""A wrapper for encoder and encoder_embed"""
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
super().__init__()
self.encoder = encoder
self.encoder_embed = encoder_embed
def forward(
self, features: Tensor, feature_lengths: Tensor
) -> Tuple[Tensor, Tensor]:
"""
Args:
features: (N, T, C)
feature_lengths: (N,)
"""
x, x_lens = self.encoder_embed(features, feature_lengths)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return encoder_out, encoder_out_lens
class StreamingEncoderModel(nn.Module):
"""A wrapper for encoder and encoder_embed"""
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
super().__init__()
assert len(encoder.chunk_size) == 1, encoder.chunk_size
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
self.chunk_size = encoder.chunk_size[0]
self.left_context_len = encoder.left_context_frames[0]
# The encoder_embed subsample features (T - 7) // 2
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
self.pad_length = 7 + 2 * 3
self.encoder = encoder
self.encoder_embed = encoder_embed
def forward(
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
) -> Tuple[Tensor, Tensor, List[Tensor]]:
"""Streaming forward for encoder_embed and encoder.
Args:
features: (N, T, C)
feature_lengths: (N,)
states: a list of Tensors
Returns encoder outputs, output lengths, and updated states.
"""
chunk_size = self.chunk_size
left_context_len = self.left_context_len
cached_embed_left_pad = states[-2]
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
x=features,
x_lens=feature_lengths,
cached_left_pad=cached_embed_left_pad,
)
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
src_key_padding_mask = make_pad_mask(x_lens)
# processed_mask is used to mask out initial states
processed_mask = torch.arange(left_context_len, device=x.device).expand(
x.size(0), left_context_len
)
processed_lens = states[-1] # (batch,)
# (batch, left_context_size)
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
# Update processed lengths
new_processed_lens = processed_lens + x_lens
# (batch, left_context_size + chunk_size)
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_states = states[:-2]
(
encoder_out,
encoder_out_lens,
new_encoder_states,
) = self.encoder.streaming_forward(
x=x,
x_lens=x_lens,
states=encoder_states,
src_key_padding_mask=src_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
new_states = new_encoder_states + [
new_cached_embed_left_pad,
new_processed_lens,
]
return encoder_out, encoder_out_lens, new_states
@torch.jit.export
def get_init_states(
self,
batch_size: int = 1,
device: torch.device = torch.device("cpu"),
) -> List[torch.Tensor]:
"""
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
states[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
"""
states = self.encoder.get_init_states(batch_size, device)
embed_states = self.encoder_embed.get_init_states(batch_size, device)
states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
states.append(processed_lens)
return states
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
# if torch.cuda.is_available():
# device = torch.device("cuda", 0)
logging.info(f"device: {device}")
token_table = k2.SymbolTable.from_file(params.tokens)
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1
logging.info(params)
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.eval()
if params.jit is True:
convert_scaled_to_non_scaled(model, inplace=True)
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
# Wrap encoder and encoder_embed as a module
if params.causal:
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
chunk_size = model.encoder.chunk_size
left_context_len = model.encoder.left_context_len
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
else:
model.encoder = EncoderModel(model.encoder, model.encoder_embed)
filename = "jit_script.pt"
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
model.save(str(params.exp_dir / filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torchscript. Export model.state_dict()")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../conformer_ctc/gigaspeech_scoring.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/jit_pretrained.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/jit_pretrained_ctc.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/jit_pretrained_streaming.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/joiner.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_check.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_decode.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc_H.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc_HL.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc_HLG.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/optim.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/pretrained.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/pretrained_ctc.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/profile.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/scaling.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/scaling_converter.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/streaming_beam_search.py

View File

@ -0,0 +1,853 @@
#!/usr/bin/env python3
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
# Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./zipformer/streaming_decode.py \
--epoch 28 \
--avg 15 \
--causal 1 \
--chunk-size 32 \
--left-context-frames 256 \
--exp-dir ./zipformer/exp \
--decoding-method greedy_search \
--num-decode-streams 2000
"""
import argparse
import logging
import math
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import numpy as np
import sentencepiece as spm
import torch
from asr_datamodule import GigaSpeechAsrDataModule
from decode_stream import DecodeStream
from kaldifeat import Fbank, FbankOptions
from lhotse import CutSet
from streaming_beam_search import (
fast_beam_search_one_best,
greedy_search,
modified_beam_search,
)
from torch import Tensor, nn
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
make_pad_mask,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Supported decoding methods are:
greedy_search
modified_beam_search
fast_beam_search
""",
)
parser.add_argument(
"--num_active_paths",
type=int,
default=4,
help="""An interger indicating how many candidates we will keep for each
frame. Used only when --decoding-method is modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=32,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--num-decode-streams",
type=int,
default=2000,
help="The number of streams that can be decoded parallel.",
)
add_model_arguments(parser)
return parser
def get_init_states(
model: nn.Module,
batch_size: int = 1,
device: torch.device = torch.device("cpu"),
) -> List[torch.Tensor]:
"""
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
states[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
"""
states = model.encoder.get_init_states(batch_size, device)
embed_states = model.encoder_embed.get_init_states(batch_size, device)
states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
states.append(processed_lens)
return states
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
"""Stack list of zipformer states that correspond to separate utterances
into a single emformer state, so that it can be used as an input for
zipformer when those utterances are formed into a batch.
Args:
state_list:
Each element in state_list corresponding to the internal state
of the zipformer model for a single utterance. For element-n,
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
cached_val2, cached_conv1, cached_conv2).
state_list[n][-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
state_list[n][-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
Note:
It is the inverse of :func:`unstack_states`.
"""
batch_size = len(state_list)
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
tot_num_layers = (len(state_list[0]) - 2) // 6
batch_states = []
for layer in range(tot_num_layers):
layer_offset = layer * 6
# cached_key: (left_context_len, batch_size, key_dim)
cached_key = torch.cat(
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
)
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
cached_nonlin_attn = torch.cat(
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
)
# cached_val1: (left_context_len, batch_size, value_dim)
cached_val1 = torch.cat(
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
)
# cached_val2: (left_context_len, batch_size, value_dim)
cached_val2 = torch.cat(
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
)
# cached_conv1: (#batch, channels, left_pad)
cached_conv1 = torch.cat(
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
)
# cached_conv2: (#batch, channels, left_pad)
cached_conv2 = torch.cat(
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
)
batch_states += [
cached_key,
cached_nonlin_attn,
cached_val1,
cached_val2,
cached_conv1,
cached_conv2,
]
cached_embed_left_pad = torch.cat(
[state_list[i][-2] for i in range(batch_size)], dim=0
)
batch_states.append(cached_embed_left_pad)
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
batch_states.append(processed_lens)
return batch_states
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
"""Unstack the zipformer state corresponding to a batch of utterances
into a list of states, where the i-th entry is the state from the i-th
utterance in the batch.
Note:
It is the inverse of :func:`stack_states`.
Args:
batch_states: A list of cached tensors of all encoder layers. For layer-i,
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
cached_conv1, cached_conv2).
state_list[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
Returns:
state_list: A list of list. Each element in state_list corresponding to the internal state
of the zipformer model for a single utterance.
"""
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
tot_num_layers = (len(batch_states) - 2) // 6
processed_lens = batch_states[-1]
batch_size = processed_lens.shape[0]
state_list = [[] for _ in range(batch_size)]
for layer in range(tot_num_layers):
layer_offset = layer * 6
# cached_key: (left_context_len, batch_size, key_dim)
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
chunks=batch_size, dim=1
)
# cached_val1: (left_context_len, batch_size, value_dim)
cached_val1_list = batch_states[layer_offset + 2].chunk(
chunks=batch_size, dim=1
)
# cached_val2: (left_context_len, batch_size, value_dim)
cached_val2_list = batch_states[layer_offset + 3].chunk(
chunks=batch_size, dim=1
)
# cached_conv1: (#batch, channels, left_pad)
cached_conv1_list = batch_states[layer_offset + 4].chunk(
chunks=batch_size, dim=0
)
# cached_conv2: (#batch, channels, left_pad)
cached_conv2_list = batch_states[layer_offset + 5].chunk(
chunks=batch_size, dim=0
)
for i in range(batch_size):
state_list[i] += [
cached_key_list[i],
cached_nonlin_attn_list[i],
cached_val1_list[i],
cached_val2_list[i],
cached_conv1_list[i],
cached_conv2_list[i],
]
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
for i in range(batch_size):
state_list[i].append(cached_embed_left_pad_list[i])
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
for i in range(batch_size):
state_list[i].append(processed_lens_list[i])
return state_list
def streaming_forward(
features: Tensor,
feature_lens: Tensor,
model: nn.Module,
states: List[Tensor],
chunk_size: int,
left_context_len: int,
) -> Tuple[Tensor, Tensor, List[Tensor]]:
"""
Returns encoder outputs, output lengths, and updated states.
"""
cached_embed_left_pad = states[-2]
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
x=features,
x_lens=feature_lens,
cached_left_pad=cached_embed_left_pad,
)
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
src_key_padding_mask = make_pad_mask(x_lens)
# processed_mask is used to mask out initial states
processed_mask = torch.arange(left_context_len, device=x.device).expand(
x.size(0), left_context_len
)
processed_lens = states[-1] # (batch,)
# (batch, left_context_size)
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
# Update processed lengths
new_processed_lens = processed_lens + x_lens
# (batch, left_context_size + chunk_size)
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_states = states[:-2]
(
encoder_out,
encoder_out_lens,
new_encoder_states,
) = model.encoder.streaming_forward(
x=x,
x_lens=x_lens,
states=encoder_states,
src_key_padding_mask=src_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
new_states = new_encoder_states + [
new_cached_embed_left_pad,
new_processed_lens,
]
return encoder_out, encoder_out_lens, new_states
def decode_one_chunk(
params: AttributeDict,
model: nn.Module,
decode_streams: List[DecodeStream],
) -> List[int]:
"""Decode one chunk frames of features for each decode_streams and
return the indexes of finished streams in a List.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
decode_streams:
A List of DecodeStream, each belonging to a utterance.
Returns:
Return a List containing which DecodeStreams are finished.
"""
device = model.device
chunk_size = int(params.chunk_size)
left_context_len = int(params.left_context_frames)
features = []
feature_lens = []
states = []
processed_lens = [] # Used in fast-beam-search
for stream in decode_streams:
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
features.append(feat)
feature_lens.append(feat_len)
states.append(stream.states)
processed_lens.append(stream.done_frames)
feature_lens = torch.tensor(feature_lens, device=device)
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
# Make sure the length after encoder_embed is at least 1.
# The encoder_embed subsample features (T - 7) // 2
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
tail_length = chunk_size * 2 + 7 + 2 * 3
if features.size(1) < tail_length:
pad_length = tail_length - features.size(1)
feature_lens += pad_length
features = torch.nn.functional.pad(
features,
(0, 0, 0, pad_length),
mode="constant",
value=LOG_EPS,
)
states = stack_states(states)
encoder_out, encoder_out_lens, new_states = streaming_forward(
features=features,
feature_lens=feature_lens,
model=model,
states=states,
chunk_size=chunk_size,
left_context_len=left_context_len,
)
encoder_out = model.joiner.encoder_proj(encoder_out)
if params.decoding_method == "greedy_search":
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
elif params.decoding_method == "fast_beam_search":
processed_lens = torch.tensor(processed_lens, device=device)
processed_lens = processed_lens + encoder_out_lens
fast_beam_search_one_best(
model=model,
encoder_out=encoder_out,
processed_lens=processed_lens,
streams=decode_streams,
beam=params.beam,
max_states=params.max_states,
max_contexts=params.max_contexts,
)
elif params.decoding_method == "modified_beam_search":
modified_beam_search(
model=model,
streams=decode_streams,
encoder_out=encoder_out,
num_active_paths=params.num_active_paths,
)
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
states = unstack_states(new_states)
finished_streams = []
for i in range(len(decode_streams)):
decode_streams[i].states = states[i]
decode_streams[i].done_frames += encoder_out_lens[i]
if decode_streams[i].done:
finished_streams.append(i)
return finished_streams
def decode_dataset(
cuts: CutSet,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
cuts:
Lhotse Cutset containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
device = model.device
opts = FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
log_interval = 100
decode_results = []
# Contain decode streams currently running.
decode_streams = []
for num, cut in enumerate(cuts):
# each utterance has a DecodeStream.
initial_states = get_init_states(model=model, batch_size=1, device=device)
decode_stream = DecodeStream(
params=params,
cut_id=cut.id,
initial_states=initial_states,
decoding_graph=decoding_graph,
device=device,
)
audio: np.ndarray = cut.load_audio()
# audio.shape: (1, num_samples)
assert len(audio.shape) == 2
assert audio.shape[0] == 1, "Should be single channel"
assert audio.dtype == np.float32, audio.dtype
# The trained model is using normalized samples
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
samples = torch.from_numpy(audio).squeeze(0)
fbank = Fbank(opts)
feature = fbank(samples.to(device))
decode_stream.set_features(feature, tail_pad_len=30)
decode_stream.ground_truth = cut.supervisions[0].text
decode_streams.append(decode_stream)
while len(decode_streams) >= params.num_decode_streams:
finished_streams = decode_one_chunk(
params=params, model=model, decode_streams=decode_streams
)
for i in sorted(finished_streams, reverse=True):
decode_results.append(
(
decode_streams[i].id,
decode_streams[i].ground_truth.split(),
sp.decode(decode_streams[i].decoding_result()).split(),
)
)
del decode_streams[i]
if num % log_interval == 0:
logging.info(f"Cuts processed until now is {num}.")
# decode final chunks of last sequences
while len(decode_streams):
finished_streams = decode_one_chunk(
params=params, model=model, decode_streams=decode_streams
)
for i in sorted(finished_streams, reverse=True):
decode_results.append(
(
decode_streams[i].id,
decode_streams[i].ground_truth.split(),
sp.decode(decode_streams[i].decoding_result()).split(),
)
)
del decode_streams[i]
if params.decoding_method == "greedy_search":
key = "greedy_search"
elif params.decoding_method == "fast_beam_search":
key = (
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
)
elif params.decoding_method == "modified_beam_search":
key = f"num_active_paths_{params.num_active_paths}"
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
return {key: decode_results}
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
GigaSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
assert params.causal, params.causal
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
# for fast_beam_search
if params.decoding_method == "fast_beam_search":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
model.device = device
decoding_graph = None
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
gigaspeech = GigaSpeechAsrDataModule(args)
dev_cuts = gigaspeech.dev_cuts()
test_cuts = gigaspeech.test_cuts()
test_sets = ["dev", "test"]
test_cuts = [dev_cuts, test_cuts]
for test_set, test_cut in zip(test_sets, test_cuts):
results_dict = decode_dataset(
cuts=test_cut,
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/subsampling.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/test_scaling.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/test_subsampling.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/zipformer.py