mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Add Zipformer recipe for GigaSpeech (#1254)
Co-authored-by: Yifan Yang <yifanyeung@qq.com> Co-authored-by: yfy62 <yfy62@d3-hpc-sjtu-test-005.cm.cluster>
This commit is contained in:
parent
eef47adee9
commit
416852e8a1
94
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
vendored
Executable file
94
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
vendored
Executable file
@ -0,0 +1,94 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/gigaspeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
pushd $repo/exp
|
||||
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||
git lfs pull --include "data/lang_bpe_500/tokens.txt"
|
||||
git lfs pull --include "exp/jit_script.pt"
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
ls -lh *.pt
|
||||
popd
|
||||
|
||||
log "Export to torchscript model"
|
||||
./zipformer/export.py \
|
||||
--exp-dir $repo/exp \
|
||||
--use-averaged-model false \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--jit 1
|
||||
|
||||
ls -lh $repo/exp/*.pt
|
||||
|
||||
log "Decode with models exported by torch.jit.script()"
|
||||
|
||||
./zipformer/jit_pretrained.py \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--nn-model-filename $repo/exp/jit_script.pt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
for method in greedy_search modified_beam_search fast_beam_search; do
|
||||
log "$method"
|
||||
|
||||
./zipformer/pretrained.py \
|
||||
--method $method \
|
||||
--beam-size 4 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
done
|
||||
|
||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||
mkdir -p zipformer/exp
|
||||
ln -s $PWD/$repo/exp/pretrained.pt zipformer/exp/epoch-999.pt
|
||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||
|
||||
ls -lh data
|
||||
ls -lh zipformer/exp
|
||||
|
||||
log "Decoding test-clean and test-other"
|
||||
|
||||
# use a small value for decoding with CPU
|
||||
max_duration=100
|
||||
|
||||
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||
log "Decoding with $method"
|
||||
|
||||
./zipformer/decode.py \
|
||||
--decoding-method $method \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--use-averaged-model 0 \
|
||||
--max-duration $max_duration \
|
||||
--exp-dir zipformer/exp
|
||||
done
|
||||
|
||||
rm zipformer/exp/*.pt
|
||||
fi
|
126
.github/workflows/run-gigaspeech-zipformer-2023-10-17.yml
vendored
Normal file
126
.github/workflows/run-gigaspeech-zipformer-2023-10-17.yml
vendored
Normal file
@ -0,0 +1,126 @@
|
||||
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-gigaspeech-zipformer-2023-10-17
|
||||
# zipformer
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
schedule:
|
||||
# minute (0-59)
|
||||
# hour (0-23)
|
||||
# day of the month (1-31)
|
||||
# month (1-12)
|
||||
# day of the week (0-6)
|
||||
# nightly build at 15:50 UTC time every day
|
||||
- cron: "50 15 * * *"
|
||||
|
||||
concurrency:
|
||||
group: run_gigaspeech_2023_10_17_zipformer-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_gigaspeech_2023_10_17_zipformer:
|
||||
if: github.event.label.name == 'zipformer' ||github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: [3.8]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'pip'
|
||||
cache-dependency-path: '**/requirements-ci.txt'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
pip uninstall -y protobuf
|
||||
pip install --no-binary protobuf protobuf==3.20.*
|
||||
|
||||
- name: Cache kaldifeat
|
||||
id: my-cache
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/kaldifeat
|
||||
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
|
||||
|
||||
- name: Install kaldifeat
|
||||
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/install-kaldifeat.sh
|
||||
|
||||
- name: Inference with pre-trained model
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||
run: |
|
||||
mkdir -p egs/gigaspeech/ASR/data
|
||||
ln -sfv ~/tmp/fbank-libri egs/gigaspeech/ASR/data/fbank
|
||||
ls -lh egs/gigaspeech/ASR/data/*
|
||||
|
||||
sudo apt-get -qq install git-lfs tree
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
|
||||
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
|
||||
|
||||
- name: Display decoding results for gigaspeech zipformer
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
shell: bash
|
||||
run: |
|
||||
cd egs/gigaspeech/ASR/
|
||||
tree ./zipformer/exp
|
||||
|
||||
cd zipformer
|
||||
echo "results for zipformer"
|
||||
echo "===greedy search==="
|
||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===fast_beam_search==="
|
||||
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===modified beam search==="
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for gigaspeech zipformer
|
||||
uses: actions/upload-artifact@v2
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
with:
|
||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-zipformer-2022-11-11
|
||||
path: egs/gigaspeech/ASR/zipformer/exp/
|
16
README.md
16
README.md
@ -148,8 +148,11 @@ in the decoding.
|
||||
|
||||
### GigaSpeech
|
||||
|
||||
We provide two models for this recipe: [Conformer CTC model][GigaSpeech_conformer_ctc]
|
||||
and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
|
||||
We provide three models for this recipe:
|
||||
|
||||
- [Conformer CTC model][GigaSpeech_conformer_ctc]
|
||||
- [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
|
||||
- [Transducer: Zipformer encoder + Embedding decoder][GigaSpeech_zipformer]
|
||||
|
||||
#### Conformer CTC
|
||||
|
||||
@ -165,6 +168,14 @@ and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned R
|
||||
| fast beam search | 10.50 | 10.69 |
|
||||
| modified beam search | 10.40 | 10.51 |
|
||||
|
||||
#### Transducer: Zipformer encoder + Embedding decoder
|
||||
|
||||
| | Dev | Test |
|
||||
|----------------------|-------|-------|
|
||||
| greedy search | 10.31 | 10.50 |
|
||||
| fast beam search | 10.26 | 10.48 |
|
||||
| modified beam search | 10.25 | 10.38 |
|
||||
|
||||
|
||||
### Aishell
|
||||
|
||||
@ -378,6 +389,7 @@ Please see: [
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/pull/1254> for more details.
|
||||
|
||||
[zipformer](./zipformer)
|
||||
|
||||
- Non-streaming
|
||||
- normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M
|
||||
|
||||
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||
<https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17>
|
||||
|
||||
The tensorboard log for training is available at
|
||||
<https://wandb.ai/yifanyeung/icefall-asr-gigaspeech-zipformer-2023-10-20>
|
||||
|
||||
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||
|
||||
| decoding method | test-clean | test-other | comment |
|
||||
|----------------------|------------|------------|--------------------|
|
||||
| greedy_search | 10.31 | 10.50 | --epoch 30 --avg 9 |
|
||||
| modified_beam_search | 10.25 | 10.38 | --epoch 30 --avg 9 |
|
||||
| fast_beam_search | 10.26 | 10.48 | --epoch 30 --avg 9 |
|
||||
|
||||
The training command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp \
|
||||
--causal 0 \
|
||||
--subset XL \
|
||||
--max-duration 700 \
|
||||
--use-transducer 1 \
|
||||
--use-ctc 0 \
|
||||
--lr-epochs 1 \
|
||||
--master-port 12345
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
# greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
# modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
# fast beam search (one best)
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
```
|
||||
|
||||
### GigaSpeech BPE training results (Pruned Transducer 2)
|
||||
|
||||
#### 2022-05-12
|
||||
|
444
egs/gigaspeech/ASR/zipformer/asr_datamodule.py
Normal file
444
egs/gigaspeech/ASR/zipformer/asr_datamodule.py
Normal file
@ -0,0 +1,444 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Yifan Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import inspect
|
||||
import logging
|
||||
import re
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import lhotse
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import AudioSamples, OnTheFlyFeatures
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class GigaSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
# GigaSpeech specific arguments
|
||||
group.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
default="XL",
|
||||
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--small-dev",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Should we use only 1000 utterances for dev (speeds up training)",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info(f"About to get train {self.args.subset} cuts")
|
||||
if self.args.subset == "XL":
|
||||
filenames = glob.glob(
|
||||
f"{self.args.manifest_dir}/XL_split/gigaspeech_cuts_XL.*.jsonl.gz"
|
||||
)
|
||||
pattern = re.compile(r"gigaspeech_cuts_XL.([0-9]+).jsonl.gz")
|
||||
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)
|
||||
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
|
||||
sorted_filenames = [f[1] for f in idx_filenames]
|
||||
logging.info(
|
||||
f"Loading GigaSpeech {len(sorted_filenames)} splits in lazy mode"
|
||||
)
|
||||
cuts_train = lhotse.combine(
|
||||
lhotse.load_manifest_lazy(p) for p in sorted_filenames
|
||||
)
|
||||
else:
|
||||
path = (
|
||||
self.args.manifest_dir / f"gigaspeech_cuts_{self.args.subset}.jsonl.gz"
|
||||
)
|
||||
cuts_train = CutSet.from_jsonl_lazy(path)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = load_manifest_lazy(
|
||||
self.args.manifest_dir / "gigaspeech_cuts_DEV.jsonl.gz"
|
||||
)
|
||||
if self.args.small_dev:
|
||||
return cuts_valid.subset(first=1000)
|
||||
else:
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "gigaspeech_cuts_TEST.jsonl.gz"
|
||||
)
|
1
egs/gigaspeech/ASR/zipformer/beam_search.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
847
egs/gigaspeech/ASR/zipformer/ctc_decode.py
Executable file
847
egs/gigaspeech/ASR/zipformer/ctc_decode.py
Executable file
@ -0,0 +1,847 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Liyong Guo,
|
||||
# Quandong Wang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
|
||||
(1) ctc-decoding
|
||||
./zipformer/ctc_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--use-ctc 1 \
|
||||
--max-duration 600 \
|
||||
--decoding-method ctc-decoding
|
||||
|
||||
(2) 1best
|
||||
./zipformer/ctc_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--use-ctc 1 \
|
||||
--max-duration 600 \
|
||||
--hlg-scale 0.6 \
|
||||
--decoding-method 1best
|
||||
|
||||
(3) nbest
|
||||
./zipformer/ctc_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--use-ctc 1 \
|
||||
--max-duration 600 \
|
||||
--hlg-scale 0.6 \
|
||||
--decoding-method nbest
|
||||
|
||||
(4) nbest-rescoring
|
||||
./zipformer/ctc_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--use-ctc 1 \
|
||||
--max-duration 600 \
|
||||
--hlg-scale 0.6 \
|
||||
--nbest-scale 1.0 \
|
||||
--lm-dir data/lm \
|
||||
--decoding-method nbest-rescoring
|
||||
|
||||
(5) whole-lattice-rescoring
|
||||
./zipformer/ctc_decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--use-ctc 1 \
|
||||
--max-duration 600 \
|
||||
--hlg-scale 0.6 \
|
||||
--nbest-scale 1.0 \
|
||||
--lm-dir data/lm \
|
||||
--decoding-method whole-lattice-rescoring
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import GigaSpeechAsrDataModule
|
||||
from train import add_model_arguments, get_params, get_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
nbest_oracle,
|
||||
one_best_decoding,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="ctc-decoding",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||
It needs neither a lexicon nor an n-gram LM.
|
||||
- (2) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (3) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
- (4) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (5) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||
is the decoding result.
|
||||
you have trained an RNN LM using ./rnn_lm/train.py
|
||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hlg-scale",
|
||||
type=float,
|
||||
default=0.6,
|
||||
help="""The scale to be applied to `hlg.scores`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The n-gram LM dir.
|
||||
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_decoding_params() -> AttributeDict:
|
||||
"""Parameters for decoding."""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"frame_shift_ms": 10,
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.decoding_method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.decoding_method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.decoding_method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict. Note: If it decodes to nothing, then return None.
|
||||
"""
|
||||
if HLG is not None:
|
||||
device = HLG.device
|
||||
else:
|
||||
device = H.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||
ctc_output = model.ctc_output(encoder_out) # (N, T, C)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
torch.div(
|
||||
supervisions["start_frame"],
|
||||
params.subsampling_factor,
|
||||
rounding_mode="floor",
|
||||
),
|
||||
torch.div(
|
||||
supervisions["num_frames"],
|
||||
params.subsampling_factor,
|
||||
rounding_mode="floor",
|
||||
),
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
if H is None:
|
||||
assert HLG is not None
|
||||
decoding_graph = HLG
|
||||
else:
|
||||
assert HLG is None
|
||||
assert bpe_model is not None
|
||||
decoding_graph = H
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=ctc_output,
|
||||
decoding_graph=decoding_graph,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.decoding_method == "ctc-decoding":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
token_ids = get_texts(best_path)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "ctc-decoding"
|
||||
return {key: hyps}
|
||||
|
||||
if params.decoding_method == "nbest-oracle":
|
||||
# Note: You can also pass rescored lattices to it.
|
||||
# We choose the HLG decoded lattice for speed reasons
|
||||
# as HLG decoding is faster and the oracle WER
|
||||
# is only slightly worse than that of rescored lattices.
|
||||
best_path = nbest_oracle(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
word_table=word_table,
|
||||
nbest_scale=params.nbest_scale,
|
||||
oov="<UNK>",
|
||||
)
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||
return {key: hyps}
|
||||
|
||||
if params.decoding_method in ["1best", "nbest"]:
|
||||
if params.decoding_method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.decoding_method in [
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.decoding_method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.decoding_method == "whole-lattice-rescoring":
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.decoding_method}"
|
||||
|
||||
ans = dict()
|
||||
if best_path_dict is not None:
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
else:
|
||||
ans = None
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.decoding_method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.decoding_method is ctc-decoding.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.decoding_method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.lm_dir = Path(args.lm_dir)
|
||||
|
||||
params = get_params()
|
||||
# add decoding params
|
||||
params.update(get_decoding_params())
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"ctc-decoding",
|
||||
"1best",
|
||||
"nbest",
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"nbest-oracle",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
params.vocab_size = num_classes
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = 0
|
||||
|
||||
if params.decoding_method == "ctc-decoding":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
else:
|
||||
H = None
|
||||
bpe_model = None
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||
)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
HLG.scores *= params.hlg_scale
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.decoding_method in (
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
):
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
# See https://github.com/k2-fsa/k2/issues/874
|
||||
# for why we need to set G.properties to None
|
||||
G.__dict__["_properties"] = None
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
# Save a dummy value so that it can be loaded in C++.
|
||||
# See https://github.com/pytorch/pytorch/issues/67902
|
||||
# for why we need to do this.
|
||||
G.dummy = 1
|
||||
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.decoding_method == "whole-lattice-rescoring":
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = gigaspeech.test_clean_cuts()
|
||||
test_other_cuts = gigaspeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = gigaspeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = gigaspeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1065
egs/gigaspeech/ASR/zipformer/decode.py
Executable file
1065
egs/gigaspeech/ASR/zipformer/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/gigaspeech/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/gigaspeech/ASR/zipformer/decoder.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/gigaspeech/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/encoder_interface.py
|
1
egs/gigaspeech/ASR/zipformer/export-onnx-ctc.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/export-onnx-ctc.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx-ctc.py
|
1
egs/gigaspeech/ASR/zipformer/export-onnx-streaming.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/export-onnx-streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx-streaming.py
|
620
egs/gigaspeech/ASR/zipformer/export-onnx.py
Executable file
620
egs/gigaspeech/ASR/zipformer/export-onnx.py
Executable file
@ -0,0 +1,620 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang, Wei Kang)
|
||||
# Copyright 2023 Danqing Fu (danqing.fu@gmail.com)
|
||||
|
||||
"""
|
||||
This script exports a transducer model from PyTorch to ONNX.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Download the pre-trained model
|
||||
|
||||
cd egs/gigaspeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
pushd $repo
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
|
||||
cd exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
2. Export the model to ONNX
|
||||
|
||||
./zipformer/export-onnx.py \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--use-averaged-model 0 \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--num-encoder-layers "2,2,3,4,3,2" \
|
||||
--downsampling-factor "1,2,4,8,4,2" \
|
||||
--feedforward-dim "512,768,1024,1536,1024,768" \
|
||||
--num-heads "4,4,4,8,4,4" \
|
||||
--encoder-dim "192,256,384,512,384,256" \
|
||||
--query-head-dim 32 \
|
||||
--value-head-dim 12 \
|
||||
--pos-head-dim 4 \
|
||||
--pos-dim 48 \
|
||||
--encoder-unmasked-dim "192,192,256,256,256,192" \
|
||||
--cnn-module-kernel "31,31,15,15,15,31" \
|
||||
--decoder-dim 512 \
|
||||
--joiner-dim 512 \
|
||||
--causal False \
|
||||
--chunk-size "16,32,64,-1" \
|
||||
--left-context-frames "64,128,256,-1"
|
||||
|
||||
It will generate the following 3 files inside $repo/exp:
|
||||
|
||||
- encoder-epoch-99-avg-1.onnx
|
||||
- decoder-epoch-99-avg-1.onnx
|
||||
- joiner-epoch-99-avg-1.onnx
|
||||
|
||||
See ./onnx_pretrained.py and ./onnx_check.py for how to
|
||||
use the exported ONNX models.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import k2
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from decoder import Decoder
|
||||
from onnxruntime.quantization import QuantType, quantize_dynamic
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
from zipformer import Zipformer2
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import make_pad_mask, num_tokens, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/tokens.txt",
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
||||
"""Add meta data to an ONNX model. It is changed in-place.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename of the ONNX model to be changed.
|
||||
meta_data:
|
||||
Key-value pairs.
|
||||
"""
|
||||
model = onnx.load(filename)
|
||||
for key, value in meta_data.items():
|
||||
meta = model.metadata_props.add()
|
||||
meta.key = key
|
||||
meta.value = value
|
||||
|
||||
onnx.save(model, filename)
|
||||
|
||||
|
||||
class OnnxEncoder(nn.Module):
|
||||
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
|
||||
|
||||
def __init__(
|
||||
self, encoder: Zipformer2, encoder_embed: nn.Module, encoder_proj: nn.Linear
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
A Zipformer encoder.
|
||||
encoder_proj:
|
||||
The projection layer for encoder from the joiner.
|
||||
"""
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.encoder_embed = encoder_embed
|
||||
self.encoder_proj = encoder_proj
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Please see the help information of Zipformer.forward
|
||||
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). Its dtype is torch.int64
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
|
||||
- encoder_out_lens, A 1-D tensor of shape (N,)
|
||||
"""
|
||||
x, x_lens = self.encoder_embed(x, x_lens)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2)
|
||||
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
||||
encoder_out = encoder_out.permute(1, 0, 2)
|
||||
encoder_out = self.encoder_proj(encoder_out)
|
||||
# Now encoder_out is of shape (N, T, joiner_dim)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
|
||||
class OnnxDecoder(nn.Module):
|
||||
"""A wrapper for Decoder and the decoder_proj from the joiner"""
|
||||
|
||||
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
|
||||
super().__init__()
|
||||
self.decoder = decoder
|
||||
self.decoder_proj = decoder_proj
|
||||
|
||||
def forward(self, y: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, context_size).
|
||||
Returns
|
||||
Return a 2-D tensor of shape (N, joiner_dim)
|
||||
"""
|
||||
need_pad = False
|
||||
decoder_output = self.decoder(y, need_pad=need_pad)
|
||||
decoder_output = decoder_output.squeeze(1)
|
||||
output = self.decoder_proj(decoder_output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class OnnxJoiner(nn.Module):
|
||||
"""A wrapper for the joiner"""
|
||||
|
||||
def __init__(self, output_linear: nn.Linear):
|
||||
super().__init__()
|
||||
self.output_linear = output_linear
|
||||
|
||||
def forward(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
decoder_out: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
encoder_out:
|
||||
A 2-D tensor of shape (N, joiner_dim)
|
||||
decoder_out:
|
||||
A 2-D tensor of shape (N, joiner_dim)
|
||||
Returns:
|
||||
Return a 2-D tensor of shape (N, vocab_size)
|
||||
"""
|
||||
logit = encoder_out + decoder_out
|
||||
logit = self.output_linear(torch.tanh(logit))
|
||||
return logit
|
||||
|
||||
|
||||
def export_encoder_model_onnx(
|
||||
encoder_model: OnnxEncoder,
|
||||
encoder_filename: str,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the given encoder model to ONNX format.
|
||||
The exported model has two inputs:
|
||||
|
||||
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
||||
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
||||
|
||||
and it has two outputs:
|
||||
|
||||
- encoder_out, a tensor of shape (N, T', joiner_dim)
|
||||
- encoder_out_lens, a tensor of shape (N,)
|
||||
|
||||
Args:
|
||||
encoder_model:
|
||||
The input encoder model
|
||||
encoder_filename:
|
||||
The filename to save the exported ONNX model.
|
||||
opset_version:
|
||||
The opset version to use.
|
||||
"""
|
||||
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||
|
||||
encoder_model = torch.jit.trace(encoder_model, (x, x_lens))
|
||||
|
||||
torch.onnx.export(
|
||||
encoder_model,
|
||||
(x, x_lens),
|
||||
encoder_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "x_lens"],
|
||||
output_names=["encoder_out", "encoder_out_lens"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "T"},
|
||||
"x_lens": {0: "N"},
|
||||
"encoder_out": {0: "N", 1: "T"},
|
||||
"encoder_out_lens": {0: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"model_type": "zipformer2",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"comment": "non-streaming zipformer2",
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
add_meta_data(filename=encoder_filename, meta_data=meta_data)
|
||||
|
||||
|
||||
def export_decoder_model_onnx(
|
||||
decoder_model: OnnxDecoder,
|
||||
decoder_filename: str,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the decoder model to ONNX format.
|
||||
|
||||
The exported model has one input:
|
||||
|
||||
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
|
||||
|
||||
and has one output:
|
||||
|
||||
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
|
||||
|
||||
Args:
|
||||
decoder_model:
|
||||
The decoder model to be exported.
|
||||
decoder_filename:
|
||||
Filename to save the exported ONNX model.
|
||||
opset_version:
|
||||
The opset version to use.
|
||||
"""
|
||||
context_size = decoder_model.decoder.context_size
|
||||
vocab_size = decoder_model.decoder.vocab_size
|
||||
|
||||
y = torch.zeros(10, context_size, dtype=torch.int64)
|
||||
decoder_model = torch.jit.script(decoder_model)
|
||||
torch.onnx.export(
|
||||
decoder_model,
|
||||
y,
|
||||
decoder_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["y"],
|
||||
output_names=["decoder_out"],
|
||||
dynamic_axes={
|
||||
"y": {0: "N"},
|
||||
"decoder_out": {0: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"context_size": str(context_size),
|
||||
"vocab_size": str(vocab_size),
|
||||
}
|
||||
add_meta_data(filename=decoder_filename, meta_data=meta_data)
|
||||
|
||||
|
||||
def export_joiner_model_onnx(
|
||||
joiner_model: nn.Module,
|
||||
joiner_filename: str,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the joiner model to ONNX format.
|
||||
The exported joiner model has two inputs:
|
||||
|
||||
- encoder_out: a tensor of shape (N, joiner_dim)
|
||||
- decoder_out: a tensor of shape (N, joiner_dim)
|
||||
|
||||
and produces one output:
|
||||
|
||||
- logit: a tensor of shape (N, vocab_size)
|
||||
"""
|
||||
joiner_dim = joiner_model.output_linear.weight.shape[1]
|
||||
logging.info(f"joiner dim: {joiner_dim}")
|
||||
|
||||
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
|
||||
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
|
||||
|
||||
torch.onnx.export(
|
||||
joiner_model,
|
||||
(projected_encoder_out, projected_decoder_out),
|
||||
joiner_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=[
|
||||
"encoder_out",
|
||||
"decoder_out",
|
||||
],
|
||||
output_names=["logit"],
|
||||
dynamic_axes={
|
||||
"encoder_out": {0: "N"},
|
||||
"decoder_out": {0: "N"},
|
||||
"logit": {0: "N"},
|
||||
},
|
||||
)
|
||||
meta_data = {
|
||||
"joiner_dim": str(joiner_dim),
|
||||
}
|
||||
add_meta_data(filename=joiner_filename, meta_data=meta_data)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
params.blank_id = token_table["<blk>"]
|
||||
params.vocab_size = num_tokens(token_table) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
|
||||
|
||||
encoder = OnnxEncoder(
|
||||
encoder=model.encoder,
|
||||
encoder_embed=model.encoder_embed,
|
||||
encoder_proj=model.joiner.encoder_proj,
|
||||
)
|
||||
|
||||
decoder = OnnxDecoder(
|
||||
decoder=model.decoder,
|
||||
decoder_proj=model.joiner.decoder_proj,
|
||||
)
|
||||
|
||||
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
|
||||
|
||||
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
|
||||
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
|
||||
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
|
||||
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
|
||||
logging.info(f"encoder parameters: {encoder_num_param}")
|
||||
logging.info(f"decoder parameters: {decoder_num_param}")
|
||||
logging.info(f"joiner parameters: {joiner_num_param}")
|
||||
logging.info(f"total parameters: {total_num_param}")
|
||||
|
||||
if params.iter > 0:
|
||||
suffix = f"iter-{params.iter}"
|
||||
else:
|
||||
suffix = f"epoch-{params.epoch}"
|
||||
|
||||
suffix += f"-avg-{params.avg}"
|
||||
|
||||
opset_version = 13
|
||||
|
||||
logging.info("Exporting encoder")
|
||||
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
|
||||
export_encoder_model_onnx(
|
||||
encoder,
|
||||
encoder_filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported encoder to {encoder_filename}")
|
||||
|
||||
logging.info("Exporting decoder")
|
||||
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
|
||||
export_decoder_model_onnx(
|
||||
decoder,
|
||||
decoder_filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported decoder to {decoder_filename}")
|
||||
|
||||
logging.info("Exporting joiner")
|
||||
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
|
||||
export_joiner_model_onnx(
|
||||
joiner,
|
||||
joiner_filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported joiner to {joiner_filename}")
|
||||
|
||||
# Generate int8 quantization models
|
||||
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
||||
|
||||
logging.info("Generate int8 quantization models")
|
||||
|
||||
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=encoder_filename,
|
||||
model_output=encoder_filename_int8,
|
||||
op_types_to_quantize=["MatMul"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=decoder_filename,
|
||||
model_output=decoder_filename_int8,
|
||||
op_types_to_quantize=["MatMul", "Gather"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=joiner_filename,
|
||||
model_output=joiner_filename_int8,
|
||||
op_types_to_quantize=["MatMul"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
522
egs/gigaspeech/ASR/zipformer/export.py
Executable file
522
egs/gigaspeech/ASR/zipformer/export.py
Executable file
@ -0,0 +1,522 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
|
||||
Usage:
|
||||
|
||||
Note: This is a example for gigaspeech dataset, if you are using different
|
||||
dataset, you should change the argument values according to your dataset.
|
||||
|
||||
(1) Export to torchscript model using torch.jit.script()
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--jit 1
|
||||
|
||||
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
|
||||
load it by `torch.jit.load("jit_script.pt")`.
|
||||
|
||||
Check ./jit_pretrained.py for its usage.
|
||||
|
||||
Check https://github.com/k2-fsa/sherpa
|
||||
for how to use the exported models outside of icefall.
|
||||
|
||||
- For streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--jit 1
|
||||
|
||||
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
|
||||
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
|
||||
|
||||
Check ./jit_pretrained_streaming.py for its usage.
|
||||
|
||||
Check https://github.com/k2-fsa/sherpa
|
||||
for how to use the exported models outside of icefall.
|
||||
|
||||
(2) Export `model.state_dict()`
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9
|
||||
|
||||
- For streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--causal 1 \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9
|
||||
|
||||
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
To use the generated file with `zipformer/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/gigaspeech/ASR
|
||||
./zipformer/decode.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
|
||||
- For streaming model:
|
||||
|
||||
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/gigaspeech/ASR
|
||||
|
||||
# simulated streaming decoding
|
||||
./zipformer/decode.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 600 \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--decoding-method greedy_search \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
|
||||
# chunk-wise streaming decoding
|
||||
./zipformer/streaming_decode.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 600 \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--decoding-method greedy_search \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
|
||||
Check ./pretrained.py for its usage.
|
||||
|
||||
Note: If you don't want to train a model from scratch, we have
|
||||
provided one for you. You can get it at
|
||||
|
||||
- non-streaming model:
|
||||
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
|
||||
with the following commands:
|
||||
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
git clone https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
# You will find the pre-trained models in exp dir
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from torch import Tensor, nn
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import make_pad_mask, num_tokens, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=9,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/tokens.txt",
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
It will generate a file named jit_script.pt.
|
||||
Check ./jit_pretrained.py for how to use it.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class EncoderModel(nn.Module):
|
||||
"""A wrapper for encoder and encoder_embed"""
|
||||
|
||||
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.encoder_embed = encoder_embed
|
||||
|
||||
def forward(
|
||||
self, features: Tensor, feature_lengths: Tensor
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Args:
|
||||
features: (N, T, C)
|
||||
feature_lengths: (N,)
|
||||
"""
|
||||
x, x_lens = self.encoder_embed(features, feature_lengths)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
|
||||
class StreamingEncoderModel(nn.Module):
|
||||
"""A wrapper for encoder and encoder_embed"""
|
||||
|
||||
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||
super().__init__()
|
||||
assert len(encoder.chunk_size) == 1, encoder.chunk_size
|
||||
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
|
||||
self.chunk_size = encoder.chunk_size[0]
|
||||
self.left_context_len = encoder.left_context_frames[0]
|
||||
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
self.pad_length = 7 + 2 * 3
|
||||
|
||||
self.encoder = encoder
|
||||
self.encoder_embed = encoder_embed
|
||||
|
||||
def forward(
|
||||
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""Streaming forward for encoder_embed and encoder.
|
||||
|
||||
Args:
|
||||
features: (N, T, C)
|
||||
feature_lengths: (N,)
|
||||
states: a list of Tensors
|
||||
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
chunk_size = self.chunk_size
|
||||
left_context_len = self.left_context_len
|
||||
|
||||
cached_embed_left_pad = states[-2]
|
||||
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lengths,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = self.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
@torch.jit.export
|
||||
def get_init_states(
|
||||
self,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = self.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = self.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
# if torch.cuda.is_available():
|
||||
# device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
params.blank_id = token_table["<blk>"]
|
||||
params.vocab_size = num_tokens(token_table) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
if params.jit is True:
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
|
||||
# Wrap encoder and encoder_embed as a module
|
||||
if params.causal:
|
||||
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
|
||||
chunk_size = model.encoder.chunk_size
|
||||
left_context_len = model.encoder.left_context_len
|
||||
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
|
||||
else:
|
||||
model.encoder = EncoderModel(model.encoder, model.encoder_embed)
|
||||
filename = "jit_script.pt"
|
||||
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
model.save(str(params.exp_dir / filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torchscript. Export model.state_dict()")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/gigaspeech/ASR/zipformer/gigaspeech_scoring.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/gigaspeech_scoring.py
Symbolic link
@ -0,0 +1 @@
|
||||
../conformer_ctc/gigaspeech_scoring.py
|
1
egs/gigaspeech/ASR/zipformer/jit_pretrained.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/jit_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/jit_pretrained.py
|
1
egs/gigaspeech/ASR/zipformer/jit_pretrained_ctc.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/jit_pretrained_ctc.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/jit_pretrained_ctc.py
|
1
egs/gigaspeech/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/jit_pretrained_streaming.py
|
1
egs/gigaspeech/ASR/zipformer/joiner.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/gigaspeech/ASR/zipformer/model.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_check.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_check.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_decode.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_decode.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_decode.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc_H.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc_H.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc_H.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
|
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc_HLG.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/onnx_pretrained_ctc_HLG.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained_ctc_HLG.py
|
1
egs/gigaspeech/ASR/zipformer/optim.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/gigaspeech/ASR/zipformer/pretrained.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/gigaspeech/ASR/zipformer/pretrained_ctc.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/pretrained_ctc.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained_ctc.py
|
1
egs/gigaspeech/ASR/zipformer/profile.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/profile.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/profile.py
|
1
egs/gigaspeech/ASR/zipformer/scaling.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/gigaspeech/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/gigaspeech/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
853
egs/gigaspeech/ASR/zipformer/streaming_decode.py
Executable file
853
egs/gigaspeech/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,853 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./zipformer/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--decoding-method greedy_search \
|
||||
--num-decode-streams 2000
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from asr_datamodule import GigaSpeechAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||
|
||||
dev_cuts = gigaspeech.dev_cuts()
|
||||
test_cuts = gigaspeech.test_cuts()
|
||||
|
||||
test_sets = ["dev", "test"]
|
||||
test_cuts = [dev_cuts, test_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/gigaspeech/ASR/zipformer/subsampling.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1
egs/gigaspeech/ASR/zipformer/test_scaling.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/test_scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_scaling.py
|
1
egs/gigaspeech/ASR/zipformer/test_subsampling.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/test_subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/test_subsampling.py
|
1345
egs/gigaspeech/ASR/zipformer/train.py
Executable file
1345
egs/gigaspeech/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/gigaspeech/ASR/zipformer/zipformer.py
Symbolic link
1
egs/gigaspeech/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user