mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Co-authored-by: Yifan Yang <yifanyeung@qq.com> Co-authored-by: yfy62 <yfy62@d3-hpc-sjtu-test-005.cm.cluster>
523 lines
17 KiB
Python
Executable File
523 lines
17 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
# Zengwei Yao,
|
|
# Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
"""
|
|
|
|
Usage:
|
|
|
|
Note: This is a example for gigaspeech dataset, if you are using different
|
|
dataset, you should change the argument values according to your dataset.
|
|
|
|
(1) Export to torchscript model using torch.jit.script()
|
|
|
|
- For non-streaming model:
|
|
|
|
./zipformer/export.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--tokens data/lang_bpe_500/tokens.txt \
|
|
--epoch 30 \
|
|
--avg 9 \
|
|
--jit 1
|
|
|
|
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
|
|
load it by `torch.jit.load("jit_script.pt")`.
|
|
|
|
Check ./jit_pretrained.py for its usage.
|
|
|
|
Check https://github.com/k2-fsa/sherpa
|
|
for how to use the exported models outside of icefall.
|
|
|
|
- For streaming model:
|
|
|
|
./zipformer/export.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--causal 1 \
|
|
--chunk-size 16 \
|
|
--left-context-frames 128 \
|
|
--tokens data/lang_bpe_500/tokens.txt \
|
|
--epoch 30 \
|
|
--avg 9 \
|
|
--jit 1
|
|
|
|
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
|
|
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
|
|
|
|
Check ./jit_pretrained_streaming.py for its usage.
|
|
|
|
Check https://github.com/k2-fsa/sherpa
|
|
for how to use the exported models outside of icefall.
|
|
|
|
(2) Export `model.state_dict()`
|
|
|
|
- For non-streaming model:
|
|
|
|
./zipformer/export.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--tokens data/lang_bpe_500/tokens.txt \
|
|
--epoch 30 \
|
|
--avg 9
|
|
|
|
- For streaming model:
|
|
|
|
./zipformer/export.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--causal 1 \
|
|
--tokens data/lang_bpe_500/tokens.txt \
|
|
--epoch 30 \
|
|
--avg 9
|
|
|
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
|
|
|
- For non-streaming model:
|
|
|
|
To use the generated file with `zipformer/decode.py`,
|
|
you can do:
|
|
|
|
cd /path/to/exp_dir
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
|
|
cd /path/to/egs/gigaspeech/ASR
|
|
./zipformer/decode.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 600 \
|
|
--decoding-method greedy_search \
|
|
--bpe-model data/lang_bpe_500/bpe.model
|
|
|
|
- For streaming model:
|
|
|
|
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
|
|
|
|
cd /path/to/exp_dir
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
|
|
cd /path/to/egs/gigaspeech/ASR
|
|
|
|
# simulated streaming decoding
|
|
./zipformer/decode.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 600 \
|
|
--causal 1 \
|
|
--chunk-size 16 \
|
|
--left-context-frames 128 \
|
|
--decoding-method greedy_search \
|
|
--bpe-model data/lang_bpe_500/bpe.model
|
|
|
|
# chunk-wise streaming decoding
|
|
./zipformer/streaming_decode.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 600 \
|
|
--causal 1 \
|
|
--chunk-size 16 \
|
|
--left-context-frames 128 \
|
|
--decoding-method greedy_search \
|
|
--bpe-model data/lang_bpe_500/bpe.model
|
|
|
|
Check ./pretrained.py for its usage.
|
|
|
|
Note: If you don't want to train a model from scratch, we have
|
|
provided one for you. You can get it at
|
|
|
|
- non-streaming model:
|
|
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
|
|
|
with the following commands:
|
|
|
|
sudo apt-get install git-lfs
|
|
git lfs install
|
|
git clone https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
|
# You will find the pre-trained models in exp dir
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import List, Tuple
|
|
|
|
import k2
|
|
import torch
|
|
from scaling_converter import convert_scaled_to_non_scaled
|
|
from torch import Tensor, nn
|
|
from train import add_model_arguments, get_model, get_params
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.utils import make_pad_mask, num_tokens, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=30,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=9,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipformer/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
default="data/lang_bpe_500/tokens.txt",
|
|
help="Path to the tokens.txt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
It will generate a file named jit_script.pt.
|
|
Check ./jit_pretrained.py for how to use it.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
class EncoderModel(nn.Module):
|
|
"""A wrapper for encoder and encoder_embed"""
|
|
|
|
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
|
super().__init__()
|
|
self.encoder = encoder
|
|
self.encoder_embed = encoder_embed
|
|
|
|
def forward(
|
|
self, features: Tensor, feature_lengths: Tensor
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Args:
|
|
features: (N, T, C)
|
|
feature_lengths: (N,)
|
|
"""
|
|
x, x_lens = self.encoder_embed(features, feature_lengths)
|
|
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
|
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
|
|
class StreamingEncoderModel(nn.Module):
|
|
"""A wrapper for encoder and encoder_embed"""
|
|
|
|
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
|
super().__init__()
|
|
assert len(encoder.chunk_size) == 1, encoder.chunk_size
|
|
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
|
|
self.chunk_size = encoder.chunk_size[0]
|
|
self.left_context_len = encoder.left_context_frames[0]
|
|
|
|
# The encoder_embed subsample features (T - 7) // 2
|
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
|
self.pad_length = 7 + 2 * 3
|
|
|
|
self.encoder = encoder
|
|
self.encoder_embed = encoder_embed
|
|
|
|
def forward(
|
|
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
|
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
|
"""Streaming forward for encoder_embed and encoder.
|
|
|
|
Args:
|
|
features: (N, T, C)
|
|
feature_lengths: (N,)
|
|
states: a list of Tensors
|
|
|
|
Returns encoder outputs, output lengths, and updated states.
|
|
"""
|
|
chunk_size = self.chunk_size
|
|
left_context_len = self.left_context_len
|
|
|
|
cached_embed_left_pad = states[-2]
|
|
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
|
|
x=features,
|
|
x_lens=feature_lengths,
|
|
cached_left_pad=cached_embed_left_pad,
|
|
)
|
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
|
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
|
|
# processed_mask is used to mask out initial states
|
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
|
x.size(0), left_context_len
|
|
)
|
|
processed_lens = states[-1] # (batch,)
|
|
# (batch, left_context_size)
|
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
|
# Update processed lengths
|
|
new_processed_lens = processed_lens + x_lens
|
|
|
|
# (batch, left_context_size + chunk_size)
|
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
|
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
encoder_states = states[:-2]
|
|
|
|
(
|
|
encoder_out,
|
|
encoder_out_lens,
|
|
new_encoder_states,
|
|
) = self.encoder.streaming_forward(
|
|
x=x,
|
|
x_lens=x_lens,
|
|
states=encoder_states,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
|
|
new_states = new_encoder_states + [
|
|
new_cached_embed_left_pad,
|
|
new_processed_lens,
|
|
]
|
|
return encoder_out, encoder_out_lens, new_states
|
|
|
|
@torch.jit.export
|
|
def get_init_states(
|
|
self,
|
|
batch_size: int = 1,
|
|
device: torch.device = torch.device("cpu"),
|
|
) -> List[torch.Tensor]:
|
|
"""
|
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
|
states[-2] is the cached left padding for ConvNeXt module,
|
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
states[-1] is processed_lens of shape (batch,), which records the number
|
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
"""
|
|
states = self.encoder.get_init_states(batch_size, device)
|
|
|
|
embed_states = self.encoder_embed.get_init_states(batch_size, device)
|
|
states.append(embed_states)
|
|
|
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
|
states.append(processed_lens)
|
|
|
|
return states
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
# if torch.cuda.is_available():
|
|
# device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
|
params.blank_id = token_table["<blk>"]
|
|
params.vocab_size = num_tokens(token_table) + 1
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.eval()
|
|
|
|
if params.jit is True:
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
# We won't use the forward() method of the model in C++, so just ignore
|
|
# it here.
|
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
# torch scriptabe.
|
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
|
|
# Wrap encoder and encoder_embed as a module
|
|
if params.causal:
|
|
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
|
|
chunk_size = model.encoder.chunk_size
|
|
left_context_len = model.encoder.left_context_len
|
|
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
|
|
else:
|
|
model.encoder = EncoderModel(model.encoder, model.encoder_embed)
|
|
filename = "jit_script.pt"
|
|
|
|
logging.info("Using torch.jit.script")
|
|
model = torch.jit.script(model)
|
|
model.save(str(params.exp_dir / filename))
|
|
logging.info(f"Saved to {filename}")
|
|
else:
|
|
logging.info("Not using torchscript. Export model.state_dict()")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|