#!/usr/bin/env python3 # # Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, # Zengwei Yao, # Wei Kang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script converts several saved checkpoints # to a single one using model averaging. """ Usage: Note: This is a example for gigaspeech dataset, if you are using different dataset, you should change the argument values according to your dataset. (1) Export to torchscript model using torch.jit.script() - For non-streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 \ --jit 1 It will generate a file `jit_script.pt` in the given `exp_dir`. You can later load it by `torch.jit.load("jit_script.pt")`. Check ./jit_pretrained.py for its usage. Check https://github.com/k2-fsa/sherpa for how to use the exported models outside of icefall. - For streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 \ --jit 1 It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`. You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`. Check ./jit_pretrained_streaming.py for its usage. Check https://github.com/k2-fsa/sherpa for how to use the exported models outside of icefall. (2) Export `model.state_dict()` - For non-streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 - For streaming model: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --causal 1 \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 It will generate a file `pretrained.pt` in the given `exp_dir`. You can later load it by `icefall.checkpoint.load_checkpoint()`. - For non-streaming model: To use the generated file with `zipformer/decode.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/gigaspeech/ASR ./zipformer/decode.py \ --exp-dir ./zipformer/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model - For streaming model: To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do: cd /path/to/exp_dir ln -s pretrained.pt epoch-9999.pt cd /path/to/egs/gigaspeech/ASR # simulated streaming decoding ./zipformer/decode.py \ --exp-dir ./zipformer/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model # chunk-wise streaming decoding ./zipformer/streaming_decode.py \ --exp-dir ./zipformer/exp \ --epoch 9999 \ --avg 1 \ --max-duration 600 \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --decoding-method greedy_search \ --bpe-model data/lang_bpe_500/bpe.model Check ./pretrained.py for its usage. Note: If you don't want to train a model from scratch, we have provided one for you. You can get it at - non-streaming model: https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17 with the following commands: sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17 # You will find the pre-trained models in exp dir """ import argparse import logging from pathlib import Path from typing import List, Tuple import k2 import torch from scaling_converter import convert_scaled_to_non_scaled from torch import Tensor, nn from train import add_model_arguments, get_model, get_params from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.utils import make_pad_mask, num_tokens, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=9, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="zipformer/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--tokens", type=str, default="data/lang_bpe_500/tokens.txt", help="Path to the tokens.txt", ) parser.add_argument( "--jit", type=str2bool, default=False, help="""True to save a model after applying torch.jit.script. It will generate a file named jit_script.pt. Check ./jit_pretrained.py for how to use it. """, ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; 2 means tri-gram", ) add_model_arguments(parser) return parser class EncoderModel(nn.Module): """A wrapper for encoder and encoder_embed""" def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None: super().__init__() self.encoder = encoder self.encoder_embed = encoder_embed def forward( self, features: Tensor, feature_lengths: Tensor ) -> Tuple[Tensor, Tensor]: """ Args: features: (N, T, C) feature_lengths: (N,) """ x, x_lens = self.encoder_embed(features, feature_lengths) src_key_padding_mask = make_pad_mask(x_lens) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask) encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) return encoder_out, encoder_out_lens class StreamingEncoderModel(nn.Module): """A wrapper for encoder and encoder_embed""" def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None: super().__init__() assert len(encoder.chunk_size) == 1, encoder.chunk_size assert len(encoder.left_context_frames) == 1, encoder.left_context_frames self.chunk_size = encoder.chunk_size[0] self.left_context_len = encoder.left_context_frames[0] # The encoder_embed subsample features (T - 7) // 2 # The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling self.pad_length = 7 + 2 * 3 self.encoder = encoder self.encoder_embed = encoder_embed def forward( self, features: Tensor, feature_lengths: Tensor, states: List[Tensor] ) -> Tuple[Tensor, Tensor, List[Tensor]]: """Streaming forward for encoder_embed and encoder. Args: features: (N, T, C) feature_lengths: (N,) states: a list of Tensors Returns encoder outputs, output lengths, and updated states. """ chunk_size = self.chunk_size left_context_len = self.left_context_len cached_embed_left_pad = states[-2] x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward( x=features, x_lens=feature_lengths, cached_left_pad=cached_embed_left_pad, ) assert x.size(1) == chunk_size, (x.size(1), chunk_size) src_key_padding_mask = make_pad_mask(x_lens) # processed_mask is used to mask out initial states processed_mask = torch.arange(left_context_len, device=x.device).expand( x.size(0), left_context_len ) processed_lens = states[-1] # (batch,) # (batch, left_context_size) processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1) # Update processed lengths new_processed_lens = processed_lens + x_lens # (batch, left_context_size + chunk_size) src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) encoder_states = states[:-2] ( encoder_out, encoder_out_lens, new_encoder_states, ) = self.encoder.streaming_forward( x=x, x_lens=x_lens, states=encoder_states, src_key_padding_mask=src_key_padding_mask, ) encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) new_states = new_encoder_states + [ new_cached_embed_left_pad, new_processed_lens, ] return encoder_out, encoder_out_lens, new_states @torch.jit.export def get_init_states( self, batch_size: int = 1, device: torch.device = torch.device("cpu"), ) -> List[torch.Tensor]: """ Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). states[-2] is the cached left padding for ConvNeXt module, of shape (batch_size, num_channels, left_pad, num_freqs) states[-1] is processed_lens of shape (batch,), which records the number of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. """ states = self.encoder.get_init_states(batch_size, device) embed_states = self.encoder_embed.get_init_states(batch_size, device) states.append(embed_states) processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device) states.append(processed_lens) return states @torch.no_grad() def main(): args = get_parser().parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) device = torch.device("cpu") # if torch.cuda.is_available(): # device = torch.device("cuda", 0) logging.info(f"device: {device}") token_table = k2.SymbolTable.from_file(params.tokens) params.blank_id = token_table[""] params.vocab_size = num_tokens(token_table) + 1 logging.info(params) logging.info("About to create model") model = get_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.eval() if params.jit is True: convert_scaled_to_non_scaled(model, inplace=True) # We won't use the forward() method of the model in C++, so just ignore # it here. # Otherwise, one of its arguments is a ragged tensor and is not # torch scriptabe. model.__class__.forward = torch.jit.ignore(model.__class__.forward) # Wrap encoder and encoder_embed as a module if params.causal: model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed) chunk_size = model.encoder.chunk_size left_context_len = model.encoder.left_context_len filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt" else: model.encoder = EncoderModel(model.encoder, model.encoder_embed) filename = "jit_script.pt" logging.info("Using torch.jit.script") model = torch.jit.script(model) model.save(str(params.exp_dir / filename)) logging.info(f"Saved to {filename}") else: logging.info("Not using torchscript. Export model.state_dict()") # Save it using a format so that it can be loaded # by :func:`load_checkpoint` filename = params.exp_dir / "pretrained.pt" torch.save({"model": model.state_dict()}, str(filename)) logging.info(f"Saved to {filename}") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()