icefall/egs/multi_ja_en/ASR/RESULTS.md

3.4 KiB

Results

Zipformer

Non-streaming (Byte-Level BPE vocab_size=2000)

Trained on 15k hours of ReazonSpeech (filtered to only audio segments between 8s and 22s) and 15k hours of MLS English.

The training command is:

./zipformer/train.py \
  --world-size 8 \
  --num-epochs 10 \
  --start-epoch 1 \
  --use-fp16 1 \
  --exp-dir zipformer/exp \
  --manifest-dir data/manifests \
  --enable-musan True

The decoding command is:

./zipformer/decode.py \
    --epoch 10 \
    --avg 1 \
    --exp-dir ./zipformer/exp \
    --decoding-method modified_beam_search \
    --manifest-dir data/manifests

To export the model with onnx:

./zipformer/export-onnx.py \
  --tokens ./data/lang/bbpe_2000/tokens.txt \
  --use-averaged-model 0 \
  --epoch 10 \
  --avg 1 \
  --exp-dir ./zipformer/exp

WER and CER on test set listed below (calculated with ./zipformer/decode.py):

Datasets ReazonSpeech + MLS English (combined test set)
Zipformer WER (%) test
greedy_search 6.33
modified_beam_search 6.32

We also include WER% for common English ASR datasets:

Corpus WER (%)
CommonVoice 29.03
TED 16.78
MLS English (test set) 8.64

And CER% for common Japanese datasets:

Corpus CER (%)
JSUT 8.13
CommonVoice 9.82
TEDx 11.64

Pre-trained model can be found here: https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/multi_ja_en_15k15k

(Not yet publicly released)

Streaming (Byte-Level BPE vocab_size=2000)

Trained on 15k hours of ReazonSpeech (filtered to only audio segments between 8s and 22s) and 15k hours of MLS English.

The training command is:

./zipformer/train.py \
  --world-size 8 \
  --num-epochs 10 \
  --start-epoch 1 \
  --use-fp16 1 \
  --exp-dir zipformer/exp \
  --manifest-dir data/manifests \
  --enable-musan True

The decoding command is:

./zipformer/decode.py \
    --epoch 10 \
    --avg 1 \
    --exp-dir ./zipformer/exp \
    --decoding-method modified_beam_search \
    --manifest-dir data/manifests

To export the model with onnx:

./zipformer/export-onnx.py \
  --tokens ./data/lang/bbpe_2000/tokens.txt \
  --use-averaged-model 0 \
  --epoch 10 \
  --avg 1 \
  --decode-chunk-len 32 \
  --exp-dir ./zipformer/exp

You may also use decode chunk sizes 16, 32, 64, 128.

Word Error Rates (WERs) listed below:

Please let us know which script to use to evaluate the streaming model!

We also include WER% for common English ASR datasets:

Please let us know which script to use to evaluate the streaming model!

And CER% for common Japanese datasets:

Please let us know which script to use to evaluate the streaming model!

Pre-trained model can be found here: https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/multi_ja_en_15k15k

(Not yet publicly released)