## Results ### Zipformer #### Non-streaming (Byte-Level BPE vocab_size=2000) Trained on 15k hours of ReazonSpeech (filtered to only audio segments between 8s and 22s) and 15k hours of MLS English. The training command is: ```shell ./zipformer/train.py \ --world-size 8 \ --num-epochs 10 \ --start-epoch 1 \ --use-fp16 1 \ --exp-dir zipformer/exp \ --manifest-dir data/manifests \ --enable-musan True ``` The decoding command is: ```shell ./zipformer/decode.py \ --epoch 10 \ --avg 1 \ --exp-dir ./zipformer/exp \ --decoding-method modified_beam_search \ --manifest-dir data/manifests ``` To export the model with onnx: ```shell ./zipformer/export-onnx.py \ --tokens ./data/lang/bbpe_2000/tokens.txt \ --use-averaged-model 0 \ --epoch 10 \ --avg 1 \ --exp-dir ./zipformer/exp ``` WER and CER on test set listed below (calculated with `./zipformer/decode.py`): | Datasets | ReazonSpeech + MLS English (combined test set) | |----------------------|------------------------------------------------| | Zipformer WER (%) | test | | greedy_search | 6.33 | | modified_beam_search | 6.32 | We also include WER% for common English ASR datasets: | Corpus | WER (%) | |-----------------------------|---------| | CommonVoice | 29.03 | | TED | 16.78 | | MLS English (test set) | 8.64 | And CER% for common Japanese datasets: | Corpus | CER (%) | |---------------|---------| | JSUT | 8.13 | | CommonVoice | 9.82 | | TEDx | 11.64 | Pre-trained model can be found here: [https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/multi_ja_en_15k15k](https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/multi_ja_en_15k15k) (Not yet publicly released) #### Streaming (Byte-Level BPE vocab_size=2000) Trained on 15k hours of ReazonSpeech (filtered to only audio segments between 8s and 22s) and 15k hours of MLS English. The training command is: ```shell ./zipformer/train.py \ --world-size 8 \ --num-epochs 10 \ --start-epoch 1 \ --use-fp16 1 \ --exp-dir zipformer/exp \ --manifest-dir data/manifests \ --enable-musan True ``` The decoding command is: ```shell ./zipformer/decode.py \ --epoch 10 \ --avg 1 \ --exp-dir ./zipformer/exp \ --decoding-method modified_beam_search \ --manifest-dir data/manifests ``` To export the model with onnx: ```shell ./zipformer/export-onnx.py \ --tokens ./data/lang/bbpe_2000/tokens.txt \ --use-averaged-model 0 \ --epoch 10 \ --avg 1 \ --decode-chunk-len 32 \ --exp-dir ./zipformer/exp ``` You may also use decode chunk sizes `16`, `32`, `64`, `128`. Word Error Rates (WERs) listed below: *Please let us know which script to use to evaluate the streaming model!* We also include WER% for common English ASR datasets: *Please let us know which script to use to evaluate the streaming model!* And CER% for common Japanese datasets: *Please let us know which script to use to evaluate the streaming model!* Pre-trained model can be found here: [https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/multi_ja_en_15k15k](https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/multi_ja_en_15k15k) (Not yet publicly released)