mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
254 lines
7.9 KiB
Python
254 lines
7.9 KiB
Python
# Copyright 2021 Piotr Żelasko
|
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import inspect
|
|
import logging
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from lhotse import CutSet, Fbank, FbankConfig
|
|
from lhotse.dataset import (
|
|
CutConcatenate,
|
|
DynamicBucketingSampler,
|
|
K2SpeechRecognitionDataset,
|
|
SimpleCutSampler,
|
|
SpecAugment,
|
|
)
|
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
|
from torch.utils.data import DataLoader
|
|
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
class MLSEnglishHFAsrDataModule:
|
|
"""
|
|
DataModule for MLS English ASR experiments using HuggingFace dataset.
|
|
Handles dataset loading and provides train/valid/test dataloaders with
|
|
on-the-fly feature extraction.
|
|
"""
|
|
|
|
def __init__(self, args: argparse.Namespace):
|
|
self.args = args
|
|
self.dataset = None
|
|
|
|
# self._validate_args()
|
|
|
|
# def _validate_args(self) -> None:
|
|
# """Validate configuration arguments."""
|
|
# if self.args.on_the_fly_feats is False:
|
|
# raise ValueError("This recipe requires on-the-fly feature extraction")
|
|
|
|
@classmethod
|
|
def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
|
|
group = parser.add_argument_group(
|
|
title="ASR data related options",
|
|
description="Options for data loading and processing",
|
|
)
|
|
|
|
# Dataset configuration
|
|
group.add_argument(
|
|
"--dataset-path",
|
|
type=str,
|
|
default="parler-tts/mls_eng",
|
|
help="Path to HuggingFace MLS English dataset (name or local path)",
|
|
)
|
|
|
|
# Sampling and batching
|
|
group.add_argument(
|
|
"--max-duration",
|
|
type=float,
|
|
default=200.0,
|
|
help="Maximum batch duration in seconds",
|
|
)
|
|
group.add_argument(
|
|
"--bucketing-sampler",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to use bucketing sampler",
|
|
)
|
|
group.add_argument(
|
|
"--num-buckets",
|
|
type=int,
|
|
default=30,
|
|
help="Number of buckets for DynamicBucketingSampler",
|
|
)
|
|
|
|
# Data augmentation
|
|
group.add_argument(
|
|
"--enable-spec-aug",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to enable SpecAugment",
|
|
)
|
|
group.add_argument(
|
|
"--spec-aug-time-warp-factor",
|
|
type=int,
|
|
default=80,
|
|
help="Time warp factor for SpecAugment",
|
|
)
|
|
|
|
# Dataloader configuration
|
|
group.add_argument(
|
|
"--num-workers",
|
|
type=int,
|
|
default=2,
|
|
help="Number of workers for data loading",
|
|
)
|
|
group.add_argument(
|
|
"--return-cuts",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to return cuts in batch",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--drop-last",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to drop last incomplete batch",
|
|
)
|
|
|
|
return parser
|
|
|
|
def load_dataset(self, dataset_path: Optional[str] = None) -> None:
|
|
"""Load the HuggingFace dataset."""
|
|
dataset_path = dataset_path or self.args.dataset_path
|
|
logging.info(f"Loading MLS English dataset from: {dataset_path}")
|
|
|
|
try:
|
|
from datasets import load_dataset
|
|
|
|
self.dataset = load_dataset(dataset_path)
|
|
logging.info("Dataset loaded successfully")
|
|
except ImportError:
|
|
raise ImportError("Please install datasets package: pip install datasets")
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to load dataset: {e}")
|
|
|
|
def _create_dataset(
|
|
self, cuts: CutSet, is_train: bool = False
|
|
) -> K2SpeechRecognitionDataset:
|
|
"""Create appropriate dataset with transforms."""
|
|
transforms = []
|
|
input_transforms = []
|
|
|
|
if is_train and self.args.enable_spec_aug:
|
|
input_transforms.append(self._create_spec_augment())
|
|
|
|
return K2SpeechRecognitionDataset(
|
|
cut_transforms=transforms,
|
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
|
input_transforms=input_transforms,
|
|
return_cuts=self.args.return_cuts,
|
|
)
|
|
|
|
def _create_spec_augment(self) -> SpecAugment:
|
|
"""Create SpecAugment transform based on config."""
|
|
num_frame_masks = 10
|
|
num_frame_masks_parameter = inspect.signature(SpecAugment.__init__).parameters[
|
|
"num_frame_masks"
|
|
]
|
|
if num_frame_masks_parameter.default == 1:
|
|
num_frame_masks = 2
|
|
|
|
return SpecAugment(
|
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
|
num_frame_masks=num_frame_masks,
|
|
features_mask_size=27,
|
|
num_feature_masks=2,
|
|
frames_mask_size=100,
|
|
)
|
|
|
|
def _create_sampler(
|
|
self, cuts: CutSet, shuffle: bool
|
|
) -> Union[DynamicBucketingSampler, SimpleCutSampler]:
|
|
"""Create appropriate sampler based on config."""
|
|
if self.args.bucketing_sampler:
|
|
return DynamicBucketingSampler(
|
|
cuts,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=shuffle,
|
|
num_buckets=self.args.num_buckets,
|
|
drop_last=self.args.drop_last,
|
|
)
|
|
return SimpleCutSampler(
|
|
cuts,
|
|
max_duration=self.args.max_duration,
|
|
shuffle=shuffle,
|
|
)
|
|
|
|
def train_dataloader(
|
|
self, sampler_state_dict: Optional[Dict[str, Any]] = None
|
|
) -> DataLoader:
|
|
"""Create train dataloader."""
|
|
cuts = self.train_cuts()
|
|
dataset = self._create_dataset(cuts, is_train=True)
|
|
sampler = self._create_sampler(cuts, shuffle=True)
|
|
|
|
if sampler_state_dict:
|
|
sampler.load_state_dict(sampler_state_dict)
|
|
|
|
return DataLoader(
|
|
dataset,
|
|
sampler=sampler,
|
|
batch_size=None,
|
|
num_workers=self.args.num_workers,
|
|
persistent_workers=False,
|
|
)
|
|
|
|
def valid_dataloader(self) -> DataLoader:
|
|
"""Create validation dataloader."""
|
|
cuts = self.valid_cuts()
|
|
return DataLoader(
|
|
self._create_dataset(cuts),
|
|
sampler=self._create_sampler(cuts, shuffle=False),
|
|
batch_size=None,
|
|
num_workers=2,
|
|
persistent_workers=False,
|
|
)
|
|
|
|
def test_dataloader(self) -> DataLoader:
|
|
"""Create test dataloader."""
|
|
cuts = self.test_cuts()
|
|
return DataLoader(
|
|
self._create_dataset(cuts),
|
|
sampler=self._create_sampler(cuts, shuffle=False),
|
|
batch_size=None,
|
|
num_workers=self.args.num_workers,
|
|
)
|
|
|
|
@lru_cache()
|
|
def train_cuts(self) -> CutSet:
|
|
return CutSet.from_huggingface_dataset(
|
|
self.dataset["train"], text_key="transcript"
|
|
)
|
|
|
|
@lru_cache()
|
|
def valid_cuts(self) -> CutSet:
|
|
return CutSet.from_huggingface_dataset(
|
|
self.dataset["dev"], text_key="transcript"
|
|
)
|
|
|
|
@lru_cache()
|
|
def test_cuts(self) -> CutSet:
|
|
return CutSet.from_huggingface_dataset(
|
|
self.dataset["test"], text_key="transcript"
|
|
)
|