# Copyright 2021 Piotr Żelasko # Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import inspect import logging from functools import lru_cache from pathlib import Path from typing import Any, Dict, List, Optional, Union from lhotse import CutSet, Fbank, FbankConfig from lhotse.dataset import ( CutConcatenate, DynamicBucketingSampler, K2SpeechRecognitionDataset, SimpleCutSampler, SpecAugment, ) from lhotse.dataset.input_strategies import OnTheFlyFeatures from torch.utils.data import DataLoader from icefall.utils import str2bool class MLSEnglishHFAsrDataModule: """ DataModule for MLS English ASR experiments using HuggingFace dataset. Handles dataset loading and provides train/valid/test dataloaders with on-the-fly feature extraction. """ def __init__(self, args: argparse.Namespace): self.args = args self.dataset = None # self._validate_args() # def _validate_args(self) -> None: # """Validate configuration arguments.""" # if self.args.on_the_fly_feats is False: # raise ValueError("This recipe requires on-the-fly feature extraction") @classmethod def add_arguments(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: group = parser.add_argument_group( title="ASR data related options", description="Options for data loading and processing", ) # Dataset configuration group.add_argument( "--dataset-path", type=str, default="parler-tts/mls_eng", help="Path to HuggingFace MLS English dataset (name or local path)", ) # Sampling and batching group.add_argument( "--max-duration", type=float, default=200.0, help="Maximum batch duration in seconds", ) group.add_argument( "--bucketing-sampler", type=str2bool, default=True, help="Whether to use bucketing sampler", ) group.add_argument( "--num-buckets", type=int, default=30, help="Number of buckets for DynamicBucketingSampler", ) # Data augmentation group.add_argument( "--enable-spec-aug", type=str2bool, default=True, help="Whether to enable SpecAugment", ) group.add_argument( "--spec-aug-time-warp-factor", type=int, default=80, help="Time warp factor for SpecAugment", ) # Dataloader configuration group.add_argument( "--num-workers", type=int, default=2, help="Number of workers for data loading", ) group.add_argument( "--return-cuts", type=str2bool, default=False, help="Whether to return cuts in batch", ) group.add_argument( "--drop-last", type=str2bool, default=True, help="Whether to drop last incomplete batch", ) return parser def load_dataset(self, dataset_path: Optional[str] = None) -> None: """Load the HuggingFace dataset.""" dataset_path = dataset_path or self.args.dataset_path logging.info(f"Loading MLS English dataset from: {dataset_path}") try: from datasets import load_dataset self.dataset = load_dataset(dataset_path) logging.info("Dataset loaded successfully") except ImportError: raise ImportError("Please install datasets package: pip install datasets") except Exception as e: raise RuntimeError(f"Failed to load dataset: {e}") def _create_dataset( self, cuts: CutSet, is_train: bool = False ) -> K2SpeechRecognitionDataset: """Create appropriate dataset with transforms.""" transforms = [] input_transforms = [] if is_train and self.args.enable_spec_aug: input_transforms.append(self._create_spec_augment()) return K2SpeechRecognitionDataset( cut_transforms=transforms, input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) def _create_spec_augment(self) -> SpecAugment: """Create SpecAugment transform based on config.""" num_frame_masks = 10 num_frame_masks_parameter = inspect.signature(SpecAugment.__init__).parameters[ "num_frame_masks" ] if num_frame_masks_parameter.default == 1: num_frame_masks = 2 return SpecAugment( time_warp_factor=self.args.spec_aug_time_warp_factor, num_frame_masks=num_frame_masks, features_mask_size=27, num_feature_masks=2, frames_mask_size=100, ) def _create_sampler( self, cuts: CutSet, shuffle: bool ) -> Union[DynamicBucketingSampler, SimpleCutSampler]: """Create appropriate sampler based on config.""" if self.args.bucketing_sampler: return DynamicBucketingSampler( cuts, max_duration=self.args.max_duration, shuffle=shuffle, num_buckets=self.args.num_buckets, drop_last=self.args.drop_last, ) return SimpleCutSampler( cuts, max_duration=self.args.max_duration, shuffle=shuffle, ) def train_dataloader( self, sampler_state_dict: Optional[Dict[str, Any]] = None ) -> DataLoader: """Create train dataloader.""" cuts = self.train_cuts() dataset = self._create_dataset(cuts, is_train=True) sampler = self._create_sampler(cuts, shuffle=True) if sampler_state_dict: sampler.load_state_dict(sampler_state_dict) return DataLoader( dataset, sampler=sampler, batch_size=None, num_workers=self.args.num_workers, persistent_workers=False, ) def valid_dataloader(self) -> DataLoader: """Create validation dataloader.""" cuts = self.valid_cuts() return DataLoader( self._create_dataset(cuts), sampler=self._create_sampler(cuts, shuffle=False), batch_size=None, num_workers=2, persistent_workers=False, ) def test_dataloader(self) -> DataLoader: """Create test dataloader.""" cuts = self.test_cuts() return DataLoader( self._create_dataset(cuts), sampler=self._create_sampler(cuts, shuffle=False), batch_size=None, num_workers=self.args.num_workers, ) @lru_cache() def train_cuts(self) -> CutSet: return CutSet.from_huggingface_dataset( self.dataset["train"], text_key="transcript" ) @lru_cache() def valid_cuts(self) -> CutSet: return CutSet.from_huggingface_dataset( self.dataset["dev"], text_key="transcript" ) @lru_cache() def test_cuts(self) -> CutSet: return CutSet.from_huggingface_dataset( self.dataset["test"], text_key="transcript" )