mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
pre-commit hooks
This commit is contained in:
parent
e69e1c04b2
commit
bb6d672b54
@ -111,4 +111,4 @@ def main():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
@ -36,6 +36,7 @@ from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class MLSEnglishHFAsrDataModule:
|
||||
"""
|
||||
DataModule for MLS English ASR experiments using HuggingFace dataset.
|
||||
@ -46,6 +47,7 @@ class MLSEnglishHFAsrDataModule:
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
self.dataset = None
|
||||
|
||||
# self._validate_args()
|
||||
|
||||
# def _validate_args(self) -> None:
|
||||
@ -59,7 +61,7 @@ class MLSEnglishHFAsrDataModule:
|
||||
title="ASR data related options",
|
||||
description="Options for data loading and processing",
|
||||
)
|
||||
|
||||
|
||||
# Dataset configuration
|
||||
group.add_argument(
|
||||
"--dataset-path",
|
||||
@ -67,7 +69,7 @@ class MLSEnglishHFAsrDataModule:
|
||||
default="parler-tts/mls_eng",
|
||||
help="Path to HuggingFace MLS English dataset (name or local path)",
|
||||
)
|
||||
|
||||
|
||||
# Sampling and batching
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
@ -87,7 +89,7 @@ class MLSEnglishHFAsrDataModule:
|
||||
default=30,
|
||||
help="Number of buckets for DynamicBucketingSampler",
|
||||
)
|
||||
|
||||
|
||||
# Data augmentation
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
@ -101,7 +103,7 @@ class MLSEnglishHFAsrDataModule:
|
||||
default=80,
|
||||
help="Time warp factor for SpecAugment",
|
||||
)
|
||||
|
||||
|
||||
# Dataloader configuration
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
@ -122,7 +124,6 @@ class MLSEnglishHFAsrDataModule:
|
||||
default=True,
|
||||
help="Whether to drop last incomplete batch",
|
||||
)
|
||||
|
||||
|
||||
return parser
|
||||
|
||||
@ -133,16 +134,17 @@ class MLSEnglishHFAsrDataModule:
|
||||
|
||||
try:
|
||||
from datasets import load_dataset
|
||||
|
||||
self.dataset = load_dataset(dataset_path)
|
||||
logging.info("Dataset loaded successfully")
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install datasets package: pip install datasets"
|
||||
)
|
||||
raise ImportError("Please install datasets package: pip install datasets")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load dataset: {e}")
|
||||
|
||||
def _create_dataset(self, cuts: CutSet, is_train: bool = False) -> K2SpeechRecognitionDataset:
|
||||
def _create_dataset(
|
||||
self, cuts: CutSet, is_train: bool = False
|
||||
) -> K2SpeechRecognitionDataset:
|
||||
"""Create appropriate dataset with transforms."""
|
||||
transforms = []
|
||||
input_transforms = []
|
||||
@ -160,9 +162,9 @@ class MLSEnglishHFAsrDataModule:
|
||||
def _create_spec_augment(self) -> SpecAugment:
|
||||
"""Create SpecAugment transform based on config."""
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
num_frame_masks_parameter = inspect.signature(SpecAugment.__init__).parameters[
|
||||
"num_frame_masks"
|
||||
]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
|
||||
@ -174,7 +176,9 @@ class MLSEnglishHFAsrDataModule:
|
||||
frames_mask_size=100,
|
||||
)
|
||||
|
||||
def _create_sampler(self, cuts: CutSet, shuffle: bool) -> Union[DynamicBucketingSampler, SimpleCutSampler]:
|
||||
def _create_sampler(
|
||||
self, cuts: CutSet, shuffle: bool
|
||||
) -> Union[DynamicBucketingSampler, SimpleCutSampler]:
|
||||
"""Create appropriate sampler based on config."""
|
||||
if self.args.bucketing_sampler:
|
||||
return DynamicBucketingSampler(
|
||||
@ -190,7 +194,9 @@ class MLSEnglishHFAsrDataModule:
|
||||
shuffle=shuffle,
|
||||
)
|
||||
|
||||
def train_dataloader(self, sampler_state_dict: Optional[Dict[str, Any]] = None) -> DataLoader:
|
||||
def train_dataloader(
|
||||
self, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||
) -> DataLoader:
|
||||
"""Create train dataloader."""
|
||||
cuts = self.train_cuts()
|
||||
dataset = self._create_dataset(cuts, is_train=True)
|
||||
@ -231,20 +237,17 @@ class MLSEnglishHFAsrDataModule:
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
return CutSet.from_huggingface_dataset(
|
||||
self.dataset["train"],
|
||||
text_key="transcript"
|
||||
self.dataset["train"], text_key="transcript"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
return CutSet.from_huggingface_dataset(
|
||||
self.dataset["dev"],
|
||||
text_key="transcript"
|
||||
self.dataset["dev"], text_key="transcript"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
return CutSet.from_huggingface_dataset(
|
||||
self.dataset["test"],
|
||||
text_key="transcript"
|
||||
)
|
||||
self.dataset["test"], text_key="transcript"
|
||||
)
|
||||
|
@ -49,7 +49,7 @@ concat_params = {"gap": 1.0, "maxlen": 10.0}
|
||||
|
||||
|
||||
def make_cutset_blueprints(
|
||||
mls_eng_hf_dataset_path: str = "parler-tts/mls_eng"
|
||||
mls_eng_hf_dataset_path: str = "parler-tts/mls_eng",
|
||||
) -> List[Tuple[str, CutSet]]:
|
||||
cut_sets = []
|
||||
|
||||
@ -57,7 +57,7 @@ def make_cutset_blueprints(
|
||||
raise ImportError(
|
||||
"To process the MLS English HF corpus, please install optional dependency: pip install datasets"
|
||||
)
|
||||
|
||||
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset(mls_eng_hf_dataset_path)
|
||||
@ -67,17 +67,14 @@ def make_cutset_blueprints(
|
||||
cut_sets.append(
|
||||
(
|
||||
"test",
|
||||
CutSet.from_huggingface_dataset(dataset["test"], text_key="transcript")
|
||||
CutSet.from_huggingface_dataset(dataset["test"], text_key="transcript"),
|
||||
)
|
||||
)
|
||||
|
||||
# Create dev dataset
|
||||
logging.info("Creating dev cuts.")
|
||||
cut_sets.append(
|
||||
(
|
||||
"dev",
|
||||
CutSet.from_huggingface_dataset(dataset["dev"], text_key="transcript")
|
||||
)
|
||||
("dev", CutSet.from_huggingface_dataset(dataset["dev"], text_key="transcript"))
|
||||
)
|
||||
|
||||
# Create train dataset
|
||||
@ -85,7 +82,7 @@ def make_cutset_blueprints(
|
||||
cut_sets.append(
|
||||
(
|
||||
"train",
|
||||
CutSet.from_huggingface_dataset(dataset["train"], text_key="transcript")
|
||||
CutSet.from_huggingface_dataset(dataset["train"], text_key="transcript"),
|
||||
)
|
||||
)
|
||||
return cut_sets
|
||||
@ -127,7 +124,7 @@ def main():
|
||||
storage_path=(args.manifest_dir / f"feats_{part}").as_posix(),
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
|
||||
# cut_set.save_audios(args.audio_dir)
|
||||
# cut_set.to_file(args.manifest_dir / f"mls_eng_cuts_{part}.jsonl.gz")
|
||||
|
||||
|
@ -24,6 +24,7 @@ from typing import Optional
|
||||
from lhotse import CutSet
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Generate transcripts for BPE training from MLS English dataset",
|
||||
@ -36,14 +37,14 @@ def get_args():
|
||||
default="parler-tts/mls_eng",
|
||||
help="Path to HuggingFace MLS English dataset (name or local path)",
|
||||
)
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default=Path("data/lang"),
|
||||
help="Directory to store output transcripts",
|
||||
)
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"--split",
|
||||
type=str,
|
||||
@ -53,6 +54,7 @@ def get_args():
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def generate_transcript_from_cuts(cuts: CutSet, output_file: Path) -> None:
|
||||
"""Generate transcript text file from Lhotse CutSet."""
|
||||
with open(output_file, "w") as f:
|
||||
@ -60,6 +62,7 @@ def generate_transcript_from_cuts(cuts: CutSet, output_file: Path) -> None:
|
||||
for sup in cut.supervisions:
|
||||
f.write(f"{sup.text}\n")
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(
|
||||
@ -73,9 +76,7 @@ def main():
|
||||
logging.info(f"Loading {args.split} split from dataset: {args.dataset_path}")
|
||||
try:
|
||||
cuts = CutSet.from_huggingface_dataset(
|
||||
args.dataset_path,
|
||||
split=args.split,
|
||||
text_key="transcript"
|
||||
args.dataset_path, split=args.split, text_key="transcript"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to load dataset: {e}")
|
||||
@ -85,5 +86,6 @@ def main():
|
||||
generate_transcript_from_cuts(cuts, output_file)
|
||||
logging.info("Transcript generation completed")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
@ -69,4 +69,4 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
done
|
||||
fi
|
||||
|
||||
log "MLS English data preparation completed successfully"
|
||||
log "MLS English data preparation completed successfully"
|
||||
|
@ -103,9 +103,6 @@ from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
# import sentencepiece as spm
|
||||
from tokenizer import Tokenizer
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import MLSEnglishHFAsrDataModule
|
||||
@ -123,6 +120,10 @@ from beam_search import (
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
)
|
||||
|
||||
# import sentencepiece as spm
|
||||
from tokenizer import Tokenizer
|
||||
|
||||
# from gigaspeech_scoring import asr_text_post_processing
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
@ -384,6 +385,7 @@ def get_parser():
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def asr_text_post_processing(inp):
|
||||
return inp
|
||||
|
||||
@ -867,8 +869,7 @@ def main():
|
||||
# sp = spm.SentencePieceProcessor()
|
||||
# sp.load(params.bpe_model)
|
||||
|
||||
sp = Tokenizer.load(Path(args.lang_dir), "bpe") # force bpe model
|
||||
|
||||
sp = Tokenizer.load(Path(args.lang_dir), "bpe") # force bpe model
|
||||
|
||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
|
@ -1115,7 +1115,7 @@ def run(rank, world_size, args):
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = Tokenizer.load(Path(args.lang_dir), "bpe") # force bpe model
|
||||
sp = Tokenizer.load(Path(args.lang_dir), "bpe") # force bpe model
|
||||
|
||||
# <blk> is defined in local/prepare_lang_char.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
@ -1239,7 +1239,6 @@ def run(rank, world_size, args):
|
||||
# valid_dl = mls_english_corpus.valid_dataloader(valid_cuts)
|
||||
valid_dl = mls_english_corpus.valid_dataloader()
|
||||
|
||||
|
||||
if not params.print_diagnostics:
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
|
Loading…
x
Reference in New Issue
Block a user