icefall/egs/tedlium3/ASR/RESULTS.md
2022-03-02 15:12:10 +08:00

69 lines
2.0 KiB
Markdown

## Results
### TedLium3 BPE training results (Transducer)
#### Conformer encoder + embedding decoder
Using the codes from this PR commit https://github.com/k2-fsa/icefall/pull/183/commits/536ad2252e2d406f24a681743d98bd5f90801b97.
Conformer encoder + non-current decoder. The decoder
contains only an embedding layer and a Conv1d (with kernel size 2).
The WERs are
| | dev | test | comment |
|------------------------------------|------------|------------|------------------------------------------|
| greedy search | 7.19 | 6.57 | --epoch 29, --avg 16, --max-duration 100 |
| beam search (beam size 4) | 7.12 | 6.37 | --epoch 29, --avg 16, --max-duration 100 |
| modified beam search (beam size 4) | 7.00 | 6.19 | --epoch 29, --avg 16, --max-duration 100 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp \
--max-duration 200 \
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/DnRwoZF8RRyod4kkfG5q5Q/#scalars
The decoding command is:
```
epoch=29
avg=15
## greedy search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
```