add md files and prepare.sh

This commit is contained in:
luomingshuang 2022-03-02 15:12:10 +08:00
parent 23dc6a0a84
commit 94810ced45
3 changed files with 329 additions and 0 deletions

View File

@ -0,0 +1,18 @@
# Introduction
This recipe includes some different ASR models trained with TedLium3.
# Transducers
There are various folders containing the name `transducer` in this folder.
The following table lists the differences among them.
| | Encoder | Decoder |
|------------------------|-----------|--------------------|
| `transducer_stateless` | Conformer | Embedding + Conv1d |
The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
We place an additional Conv1d layer right after the input embedding layer.

View File

@ -0,0 +1,68 @@
## Results
### TedLium3 BPE training results (Transducer)
#### Conformer encoder + embedding decoder
Using the codes from this PR commit https://github.com/k2-fsa/icefall/pull/183/commits/536ad2252e2d406f24a681743d98bd5f90801b97.
Conformer encoder + non-current decoder. The decoder
contains only an embedding layer and a Conv1d (with kernel size 2).
The WERs are
| | dev | test | comment |
|------------------------------------|------------|------------|------------------------------------------|
| greedy search | 7.19 | 6.57 | --epoch 29, --avg 16, --max-duration 100 |
| beam search (beam size 4) | 7.12 | 6.37 | --epoch 29, --avg 16, --max-duration 100 |
| modified beam search (beam size 4) | 7.00 | 6.19 | --epoch 29, --avg 16, --max-duration 100 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp \
--max-duration 200 \
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/DnRwoZF8RRyod4kkfG5q5Q/#scalars
The decoding command is:
```
epoch=29
avg=15
## greedy search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
```

243
egs/tedlium3/ASR/prepare.sh Normal file
View File

@ -0,0 +1,243 @@
#!/usr/bin/env bash
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/tedlium3
# You can find data, doc, legacy, LM, etc, inside it.
# You can download them from https://www.openslr.org/51
#
# - $dl_dir/lm
# This directory contains the language model(LM) downloaded from
# https://huggingface.co/luomingshuang/tedlium3_lm. About how to get these LM files, you can know it
# from https://github.com/luomingshuang/Train_LM_with_kaldilm.
#
# - lm_3_gram.arpa
# - lm_4_gram.arpa
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
git clone https://huggingface.co/luomingshuang/tedlium3_lm $dl_dir/lm
cd $dl_dir/lm && git lfs pull
# If you want to download Tedlium 4 gram language models
# using the follow commands:
#wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm/ || exit 1
#wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm/ || exit 1
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriSpeech,
# you can create a symlink
#
# ln -sfv /path/to/tedlium3 $dl_dir/tedlium3
#
if [ ! -d $dl_dir/tedlium ]; then
lhotse download tedlium $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
#ln -sfv /path/to/musan $dl_dir/musan
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare tedlium3 manifest"
# We assume that you have downloaded the tedlium3 corpus
# to $dl_dir/tedlium3
mkdir -p data/manifests
lhotse prepare tedlium $dl_dir/tedlium3 data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for tedlium3"
mkdir -p data/fbank
./local/compute_fbank_tedlium.py
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
if [ ! -f $lang_dir/train.text ]; then
./local/prepare_transcripts.py \
--lang-dir $lang_dir \
--manifests-dir data/manifests
cat download/tedlium3/TEDLIUM.152k.dic |
grep -v -w "<s>" |
grep -v -w "</s>" |
grep -v -w "<unk>" |
LANG= LC_ALL= sort |
sed 's:([0-9])::g' > $lang_dir/lexicon_words.txt
(echo '<UNK> <UNK>'; ) |
cat - $lang_dir/lexicon_words.txt |
sort | uniq > $lang_dir/lexicon.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
cat data/lang_phone/train.text | cut -d " " -f 2-
> $lang_dir/transcript_words.txt
# remove the <unk> for transcript_words.txt
sed -i 's/ <unk>//g' $lang_dir/transcript_words.txt
sed -i 's/<unk> //g' $lang_dir/transcript_words.txt
sed -i 's/<unk>//g' $lang_dir/transcript_words.txt
fi
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare bigram P"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_dir/transcript_tokens.txt
fi
if [ ! -f $lang_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
fi
if [ ! -f $lang_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_dir/P.arpa > $lang_dir/P.fst.txt
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
data/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
echo 'completing the G building....'
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
done
fi