icefall/egs/mgb2/ASR/RESULTS.md
AmirHussein96 68aa924eeb mgb2
2022-06-05 01:00:32 +03:00

89 lines
2.1 KiB
Markdown

# Results
### MGB2 BPE training results (Conformer-CTC) (after 3 epochs)
#### 2022-06-04
The best WER, as of 2022-06-04, for the MGB2 test dataset is below
Using whole lattice HLG decoding + n-gram LM rescoring + attention decoder rescoring
| | dev | test |
|-----|------------|------------|
| WER | 25.32 | 23.53 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.1 | - |
Using n-best (n=0.5) HLG decoding + n-gram LM rescoring + attention decoder rescoring:
| | dev | test |
|-----|------------|------------|
| WER | 27.87 | 26.12 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.01 | 0.3 |
To reproduce the above result, use the following commands for training:
# Note: the model was trained on V-100 32GB GPU
```
cd egs/mgb2/ASR
. ./path.sh
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1"
./conformer_ctc/train.py \
--lang-dir data/lang_bpe_5000 \
--att-rate 0.8 \
--lr-factor 10 \
--max-duration \
--concatenate-cuts 0 \
--world-size 2 \
--bucketing-sampler 1 \
--max-duration 100 \
--start-epoch 0 \
--num-epochs 30
```
and the following command for nbest decoding
```
./conformer_ctc/decode.py \
--lang-dir data/lang_bpe_5000 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 2 \
--avg 2 \
--method attention-decoder \
--nbest-scale 0.5
```
and the following command for whole-lattice decoding
```
./conformer_ctc/decode.py \
--lang-dir data/lang_bpe_5000 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 2 \
--avg 2 \
--method whole-lattice-rescoring
```
You can find the pre-trained model by visiting
<comming soon>
The tensorboard log for training is available at
<https://tensorboard.dev/experiment/zy6FnumCQlmiO7BPsdCmEg/#scalars>