# Results ### MGB2 BPE training results (Conformer-CTC) (after 3 epochs) #### 2022-06-04 The best WER, as of 2022-06-04, for the MGB2 test dataset is below Using whole lattice HLG decoding + n-gram LM rescoring + attention decoder rescoring | | dev | test | |-----|------------|------------| | WER | 25.32 | 23.53 | Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are: | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.1 | - | Using n-best (n=0.5) HLG decoding + n-gram LM rescoring + attention decoder rescoring: | | dev | test | |-----|------------|------------| | WER | 27.87 | 26.12 | Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are: | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.01 | 0.3 | To reproduce the above result, use the following commands for training: # Note: the model was trained on V-100 32GB GPU ``` cd egs/mgb2/ASR . ./path.sh ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1" ./conformer_ctc/train.py \ --lang-dir data/lang_bpe_5000 \ --att-rate 0.8 \ --lr-factor 10 \ --max-duration \ --concatenate-cuts 0 \ --world-size 2 \ --bucketing-sampler 1 \ --max-duration 100 \ --start-epoch 0 \ --num-epochs 30 ``` and the following command for nbest decoding ``` ./conformer_ctc/decode.py \ --lang-dir data/lang_bpe_5000 \ --max-duration 30 \ --concatenate-cuts 0 \ --bucketing-sampler 1 \ --num-paths 1000 \ --epoch 2 \ --avg 2 \ --method attention-decoder \ --nbest-scale 0.5 ``` and the following command for whole-lattice decoding ``` ./conformer_ctc/decode.py \ --lang-dir data/lang_bpe_5000 \ --max-duration 30 \ --concatenate-cuts 0 \ --bucketing-sampler 1 \ --num-paths 1000 \ --epoch 2 \ --avg 2 \ --method whole-lattice-rescoring ``` You can find the pre-trained model by visiting The tensorboard log for training is available at