icefall/egs/aishell/ASR/prepare.sh
2024-01-15 19:51:41 +08:00

406 lines
13 KiB
Bash
Executable File

#!/usr/bin/env bash
export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=11
perturb_speed=true
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/aishell
# You can find data_aishell, resource_aishell inside it.
# You can download them from https://www.openslr.org/33
#
# - $dl_dir/lm
# This directory contains the language model downloaded from
# https://huggingface.co/pkufool/aishell_lm
#
# - 3-gram.unpruned.arpa
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bbpe_xxx,
# data/lang_bbpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
# If you have pre-downloaded it to /path/to/aishell,
# you can create a symlink
#
# ln -sfv /path/to/aishell $dl_dir/aishell
#
# The directory structure is
# aishell/
# |-- data_aishell
# | |-- transcript
# | `-- wav
# `-- resource_aishell
# |-- lexicon.txt
# `-- speaker.info
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
lhotse download aishell $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
# if [ ! -d $dl_dir/musan ]; then
# lhotse download musan $dl_dir
# fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aishell manifest"
# We assume that you have downloaded the aishell corpus
# to $dl_dir/aishell
if [ ! -f data/manifests/.aishell_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare aishell $dl_dir/aishell data/manifests
touch data/manifests/.aishell_manifests.done
fi
fi
# if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
# log "Stage 2: Prepare musan manifest"
# # We assume that you have downloaded the musan corpus
# # to data/musan
# if [ ! -f data/manifests/.musan_manifests.done ]; then
# log "It may take 6 minutes"
# mkdir -p data/manifests
# lhotse prepare musan $dl_dir/musan data/manifests
# touch data/manifests/.musan_manifests.done
# fi
# fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed}
touch data/fbank/.aishell.done
fi
fi
# if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
# log "Stage 30: Compute whisper fbank for aishell"
# if [ ! -f data/fbank/.aishell.done ]; then
# mkdir -p data/fbank
# ./local/compute_whisper_fbank_aishell.py --perturb-speed True
# touch data/fbank/.aishell.done
# fi
# fi
if [ $stage -le 300 ] && [ $stop_stage -ge 300 ]; then
log "Stage 30: Compute whisper fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_whisper_fbank_aishell.py --perturb-speed True --num-mel-bins 128
touch data/fbank/.aishell.done
fi
fi
# if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
# log "Stage 4: Compute fbank for musan"
# if [ ! -f data/fbank/.msuan.done ]; then
# mkdir -p data/fbank
# ./local/compute_fbank_musan.py
# touch data/fbank/.msuan.done
# fi
# fi
# if [ $stage -le 40 ] && [ $stop_stage -ge 40 ]; then
# log "Stage 4: Compute fbank for musan"
# if [ ! -f data/fbank/.msuan.done ]; then
# mkdir -p data/fbank
# ./local/compute_whisper_fbank_musan.py
# touch data/fbank/.msuan.done
# fi
# fi
# lang_phone_dir=data/lang_phone
# if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
# log "Stage 5: Prepare phone based lang"
# mkdir -p $lang_phone_dir
# (echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
# cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
# sort | uniq > $lang_phone_dir/lexicon.txt
# ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir
# if [ ! -f $lang_phone_dir/L_disambig.pt ]; then
# ./local/prepare_lang.py --lang-dir $lang_phone_dir
# fi
# Train a bigram P for MMI training
if [ ! -f $lang_phone_dir/transcript_words.txt ]; then
log "Generate data to train phone based bigram P"
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid
find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text |
cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt
fi
# if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then
# ./local/convert_transcript_words_to_tokens.py \
# --lexicon $lang_phone_dir/uniq_lexicon.txt \
# --transcript $lang_phone_dir/transcript_words.txt \
# --oov "<UNK>" \
# > $lang_phone_dir/transcript_tokens.txt
# fi
# if [ ! -f $lang_phone_dir/P.arpa ]; then
# ./shared/make_kn_lm.py \
# -ngram-order 2 \
# -text $lang_phone_dir/transcript_tokens.txt \
# -lm $lang_phone_dir/P.arpa
# fi
# if [ ! -f $lang_phone_dir/P.fst.txt ]; then
# python3 -m kaldilm \
# --read-symbol-table="$lang_phone_dir/tokens.txt" \
# --disambig-symbol='#0' \
# --max-order=2 \
# $lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt
# fi
# fi
# lang_char_dir=data/lang_char
# if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
# log "Stage 6: Prepare char based lang"
# mkdir -p $lang_char_dir
# # We reuse words.txt from phone based lexicon
# # so that the two can share G.pt later.
# # The transcripts in training set, generated in stage 5
# cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt
# cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
# cut -d " " -f 2- > $lang_char_dir/text
# (echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
# > $lang_char_dir/words.txt
# cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
# | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
# num_lines=$(< $lang_char_dir/words.txt wc -l)
# (echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
# >> $lang_char_dir/words.txt
# if [ ! -f $lang_char_dir/L_disambig.pt ]; then
# ./local/prepare_char.py --lang-dir $lang_char_dir
# fi
# fi
# if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
# log "Stage 7: Prepare Byte BPE based lang"
# for vocab_size in ${vocab_sizes[@]}; do
# lang_dir=data/lang_bbpe_${vocab_size}
# mkdir -p $lang_dir
# cp $lang_char_dir/words.txt $lang_dir
# cp $lang_char_dir/text $lang_dir
# if [ ! -f $lang_dir/bbpe.model ]; then
# ./local/train_bbpe_model.py \
# --lang-dir $lang_dir \
# --vocab-size $vocab_size \
# --transcript $lang_dir/text
# fi
# if [ ! -f $lang_dir/L_disambig.pt ]; then
# ./local/prepare_lang_bbpe.py --lang-dir $lang_dir
# fi
# done
# fi
# if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
# log "Stage 8: Prepare G"
# mkdir -p data/lm
# # Train LM on transcripts
# if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
# python3 ./shared/make_kn_lm.py \
# -ngram-order 3 \
# -text $lang_char_dir/transcript_words.txt \
# -lm data/lm/3-gram.unpruned.arpa
# fi
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="$lang_phone_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_phone.fst.txt
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt
fi
if [ ! -f $lang_char_dir/HLG.fst ]; then
./local/prepare_lang_fst.py \
--lang-dir $lang_char_dir \
--ngram-G ./data/lm/G_3_gram_char.fst.txt
fi
fi
# if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
# log "Stage 9: Compile LG & HLG"
# ./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
# ./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
# for vocab_size in ${vocab_sizes[@]}; do
# lang_dir=data/lang_bbpe_${vocab_size}
# ./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char
# done
# ./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
# ./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
# for vocab_size in ${vocab_sizes[@]}; do
# lang_dir=data/lang_bbpe_${vocab_size}
# ./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char
# done
# fi
# if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
# log "Stage 10: Generate LM training data"
# log "Processing char based data"
# out_dir=data/lm_training_char
# mkdir -p $out_dir $dl_dir/lm
# if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
# cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
# fi
# # training words
# ./local/prepare_char_lm_training_data.py \
# --lang-char data/lang_char \
# --lm-data $dl_dir/lm/aishell-train-word.txt \
# --lm-archive $out_dir/lm_data.pt
# # valid words
# if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
# aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
# aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
# find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
# awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
# cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
# fi
# ./local/prepare_char_lm_training_data.py \
# --lang-char data/lang_char \
# --lm-data $dl_dir/lm/aishell-valid-word.txt \
# --lm-archive $out_dir/lm_data_valid.pt
# # test words
# if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
# aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
# aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
# find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
# awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
# cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
# fi
# ./local/prepare_char_lm_training_data.py \
# --lang-char data/lang_char \
# --lm-data $dl_dir/lm/aishell-test-word.txt \
# --lm-archive $out_dir/lm_data_test.pt
# fi
# if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
# log "Stage 11: Sort LM training data"
# # Sort LM training data by sentence length in descending order
# # for ease of training.
# #
# # Sentence length equals to the number of tokens
# # in a sentence.
# out_dir=data/lm_training_char
# mkdir -p $out_dir
# ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
# ./local/sort_lm_training_data.py \
# --in-lm-data $out_dir/lm_data.pt \
# --out-lm-data $out_dir/sorted_lm_data.pt \
# --out-statistics $out_dir/statistics.txt
# ./local/sort_lm_training_data.py \
# --in-lm-data $out_dir/lm_data_valid.pt \
# --out-lm-data $out_dir/sorted_lm_data-valid.pt \
# --out-statistics $out_dir/statistics-valid.txt
# ./local/sort_lm_training_data.py \
# --in-lm-data $out_dir/lm_data_test.pt \
# --out-lm-data $out_dir/sorted_lm_data-test.pt \
# --out-statistics $out_dir/statistics-test.txt
# fi
# if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
# log "Stage 11: Train RNN LM model"
# python ../../../icefall/rnn_lm/train.py \
# --start-epoch 0 \
# --world-size 1 \
# --num-epochs 20 \
# --use-fp16 0 \
# --embedding-dim 512 \
# --hidden-dim 512 \
# --num-layers 2 \
# --batch-size 400 \
# --exp-dir rnnlm_char/exp \
# --lm-data $out_dir/sorted_lm_data.pt \
# --lm-data-valid $out_dir/sorted_lm_data-valid.pt \
# --vocab-size 4336 \
# --master-port 12345
# fi