support large-v3

This commit is contained in:
Yuekai Zhang 2024-01-14 18:27:41 +08:00
parent fa7ad4dc72
commit 2ce09809cd
8 changed files with 246 additions and 220 deletions

View File

@ -49,8 +49,8 @@ def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False):
dataset_parts = (
"train",
#"dev",
#"test",
"dev",
"test",
)
prefix = "aishell"
suffix = "jsonl.gz"
@ -69,7 +69,7 @@ def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False):
dataset_parts,
)
extractor = WhisperFbank(WhisperFbankConfig(device='cuda'))
extractor = WhisperFbank(WhisperFbankConfig(num_filters=num_mel_bins, device='cuda'))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():

View File

@ -83,9 +83,9 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
# if [ ! -d $dl_dir/musan ]; then
# lhotse download musan $dl_dir
# fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
@ -99,17 +99,17 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
# if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
# log "Stage 2: Prepare musan manifest"
# # We assume that you have downloaded the musan corpus
# # to data/musan
# if [ ! -f data/manifests/.musan_manifests.done ]; then
# log "It may take 6 minutes"
# mkdir -p data/manifests
# lhotse prepare musan $dl_dir/musan data/manifests
# touch data/manifests/.musan_manifests.done
# fi
# fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell"
@ -120,47 +120,56 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
fi
fi
if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
# if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
# log "Stage 30: Compute whisper fbank for aishell"
# if [ ! -f data/fbank/.aishell.done ]; then
# mkdir -p data/fbank
# ./local/compute_whisper_fbank_aishell.py --perturb-speed True
# touch data/fbank/.aishell.done
# fi
# fi
if [ $stage -le 300 ] && [ $stop_stage -ge 300 ]; then
log "Stage 30: Compute whisper fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_whisper_fbank_aishell.py --perturb-speed True
./local/compute_whisper_fbank_aishell.py --perturb-speed True --num-mel-bins 128
touch data/fbank/.aishell.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
# if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
# log "Stage 4: Compute fbank for musan"
# if [ ! -f data/fbank/.msuan.done ]; then
# mkdir -p data/fbank
# ./local/compute_fbank_musan.py
# touch data/fbank/.msuan.done
# fi
# fi
if [ $stage -le 40 ] && [ $stop_stage -ge 40 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_whisper_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
# if [ $stage -le 40 ] && [ $stop_stage -ge 40 ]; then
# log "Stage 4: Compute fbank for musan"
# if [ ! -f data/fbank/.msuan.done ]; then
# mkdir -p data/fbank
# ./local/compute_whisper_fbank_musan.py
# touch data/fbank/.msuan.done
# fi
# fi
lang_phone_dir=data/lang_phone
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
mkdir -p $lang_phone_dir
# lang_phone_dir=data/lang_phone
# if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
# log "Stage 5: Prepare phone based lang"
# mkdir -p $lang_phone_dir
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
sort | uniq > $lang_phone_dir/lexicon.txt
# (echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
# cat - $dl_dir/aishell/resource_aishell/lexicon.txt |
# sort | uniq > $lang_phone_dir/lexicon.txt
./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir
# ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir
if [ ! -f $lang_phone_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_phone_dir
fi
# if [ ! -f $lang_phone_dir/L_disambig.pt ]; then
# ./local/prepare_lang.py --lang-dir $lang_phone_dir
# fi
# Train a bigram P for MMI training
@ -173,93 +182,93 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt
fi
if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_phone_dir/uniq_lexicon.txt \
--transcript $lang_phone_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_phone_dir/transcript_tokens.txt
fi
# if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then
# ./local/convert_transcript_words_to_tokens.py \
# --lexicon $lang_phone_dir/uniq_lexicon.txt \
# --transcript $lang_phone_dir/transcript_words.txt \
# --oov "<UNK>" \
# > $lang_phone_dir/transcript_tokens.txt
# fi
if [ ! -f $lang_phone_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_phone_dir/transcript_tokens.txt \
-lm $lang_phone_dir/P.arpa
fi
# if [ ! -f $lang_phone_dir/P.arpa ]; then
# ./shared/make_kn_lm.py \
# -ngram-order 2 \
# -text $lang_phone_dir/transcript_tokens.txt \
# -lm $lang_phone_dir/P.arpa
# fi
if [ ! -f $lang_phone_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_phone_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt
fi
fi
# if [ ! -f $lang_phone_dir/P.fst.txt ]; then
# python3 -m kaldilm \
# --read-symbol-table="$lang_phone_dir/tokens.txt" \
# --disambig-symbol='#0' \
# --max-order=2 \
# $lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt
# fi
# fi
lang_char_dir=data/lang_char
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare char based lang"
mkdir -p $lang_char_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
# lang_char_dir=data/lang_char
# if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
# log "Stage 6: Prepare char based lang"
# mkdir -p $lang_char_dir
# # We reuse words.txt from phone based lexicon
# # so that the two can share G.pt later.
# The transcripts in training set, generated in stage 5
cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt
# # The transcripts in training set, generated in stage 5
# cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt
cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
cut -d " " -f 2- > $lang_char_dir/text
# cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt |
# cut -d " " -f 2- > $lang_char_dir/text
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
> $lang_char_dir/words.txt
# (echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
# > $lang_char_dir/words.txt
cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
# cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
# | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt
num_lines=$(< $lang_char_dir/words.txt wc -l)
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
>> $lang_char_dir/words.txt
# num_lines=$(< $lang_char_dir/words.txt wc -l)
# (echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
# >> $lang_char_dir/words.txt
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
./local/prepare_char.py --lang-dir $lang_char_dir
fi
fi
# if [ ! -f $lang_char_dir/L_disambig.pt ]; then
# ./local/prepare_char.py --lang-dir $lang_char_dir
# fi
# fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare Byte BPE based lang"
# if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
# log "Stage 7: Prepare Byte BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
mkdir -p $lang_dir
# for vocab_size in ${vocab_sizes[@]}; do
# lang_dir=data/lang_bbpe_${vocab_size}
# mkdir -p $lang_dir
cp $lang_char_dir/words.txt $lang_dir
cp $lang_char_dir/text $lang_dir
# cp $lang_char_dir/words.txt $lang_dir
# cp $lang_char_dir/text $lang_dir
if [ ! -f $lang_dir/bbpe.model ]; then
./local/train_bbpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
# if [ ! -f $lang_dir/bbpe.model ]; then
# ./local/train_bbpe_model.py \
# --lang-dir $lang_dir \
# --vocab-size $vocab_size \
# --transcript $lang_dir/text
# fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
fi
done
fi
# if [ ! -f $lang_dir/L_disambig.pt ]; then
# ./local/prepare_lang_bbpe.py --lang-dir $lang_dir
# fi
# done
# fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare G"
# if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
# log "Stage 8: Prepare G"
mkdir -p data/lm
# mkdir -p data/lm
# Train LM on transcripts
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/transcript_words.txt \
-lm data/lm/3-gram.unpruned.arpa
fi
# # Train LM on transcripts
# if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
# python3 ./shared/make_kn_lm.py \
# -ngram-order 3 \
# -text $lang_char_dir/transcript_words.txt \
# -lm data/lm/3-gram.unpruned.arpa
# fi
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
@ -285,112 +294,112 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
fi
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile LG & HLG"
./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char
done
# if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
# log "Stage 9: Compile LG & HLG"
# ./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
# ./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char
# for vocab_size in ${vocab_sizes[@]}; do
# lang_dir=data/lang_bbpe_${vocab_size}
# ./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char
# done
./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bbpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char
done
fi
# ./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone
# ./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char
# for vocab_size in ${vocab_sizes[@]}; do
# lang_dir=data/lang_bbpe_${vocab_size}
# ./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char
# done
# fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Generate LM training data"
# if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
# log "Stage 10: Generate LM training data"
log "Processing char based data"
out_dir=data/lm_training_char
mkdir -p $out_dir $dl_dir/lm
# log "Processing char based data"
# out_dir=data/lm_training_char
# mkdir -p $out_dir $dl_dir/lm
if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
fi
# if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
# cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
# fi
# training words
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-train-word.txt \
--lm-archive $out_dir/lm_data.pt
# # training words
# ./local/prepare_char_lm_training_data.py \
# --lang-char data/lang_char \
# --lm-data $dl_dir/lm/aishell-train-word.txt \
# --lm-archive $out_dir/lm_data.pt
# valid words
if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
fi
# # valid words
# if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
# aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
# aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
# find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
# awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
# cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
# fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-valid-word.txt \
--lm-archive $out_dir/lm_data_valid.pt
# ./local/prepare_char_lm_training_data.py \
# --lang-char data/lang_char \
# --lm-data $dl_dir/lm/aishell-valid-word.txt \
# --lm-archive $out_dir/lm_data_valid.pt
# test words
if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
fi
# # test words
# if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
# aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
# aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
# find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
# awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
# cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
# fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-test-word.txt \
--lm-archive $out_dir/lm_data_test.pt
fi
# ./local/prepare_char_lm_training_data.py \
# --lang-char data/lang_char \
# --lm-data $dl_dir/lm/aishell-test-word.txt \
# --lm-archive $out_dir/lm_data_test.pt
# fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Sort LM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of tokens
# in a sentence.
# if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
# log "Stage 11: Sort LM training data"
# # Sort LM training data by sentence length in descending order
# # for ease of training.
# #
# # Sentence length equals to the number of tokens
# # in a sentence.
out_dir=data/lm_training_char
mkdir -p $out_dir
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
# out_dir=data/lm_training_char
# mkdir -p $out_dir
# ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
# ./local/sort_lm_training_data.py \
# --in-lm-data $out_dir/lm_data.pt \
# --out-lm-data $out_dir/sorted_lm_data.pt \
# --out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
# ./local/sort_lm_training_data.py \
# --in-lm-data $out_dir/lm_data_valid.pt \
# --out-lm-data $out_dir/sorted_lm_data-valid.pt \
# --out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
fi
# ./local/sort_lm_training_data.py \
# --in-lm-data $out_dir/lm_data_test.pt \
# --out-lm-data $out_dir/sorted_lm_data-test.pt \
# --out-statistics $out_dir/statistics-test.txt
# fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 11: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 1 \
--num-epochs 20 \
--use-fp16 0 \
--embedding-dim 512 \
--hidden-dim 512 \
--num-layers 2 \
--batch-size 400 \
--exp-dir rnnlm_char/exp \
--lm-data $out_dir/sorted_lm_data.pt \
--lm-data-valid $out_dir/sorted_lm_data-valid.pt \
--vocab-size 4336 \
--master-port 12345
fi
# if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
# log "Stage 11: Train RNN LM model"
# python ../../../icefall/rnn_lm/train.py \
# --start-epoch 0 \
# --world-size 1 \
# --num-epochs 20 \
# --use-fp16 0 \
# --embedding-dim 512 \
# --hidden-dim 512 \
# --num-layers 2 \
# --batch-size 400 \
# --exp-dir rnnlm_char/exp \
# --lm-data $out_dir/sorted_lm_data.pt \
# --lm-data-valid $out_dir/sorted_lm_data-valid.pt \
# --vocab-size 4336 \
# --master-port 12345
# fi

View File

@ -176,7 +176,7 @@ class AishellAsrDataModule:
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
default=False,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
@ -192,11 +192,11 @@ class AishellAsrDataModule:
The state dict for the training sampler.
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
)

View File

@ -127,6 +127,15 @@ def get_parser():
help="The experiment dir",
)
parser.add_argument(
"--model-name",
type=str,
default="large-v2",
choices=["large-v2", "large-v3", "medium", "small", "tiny"],
help="""The model name to use.
""",
)
return parser
@ -370,7 +379,7 @@ def main():
logging.info(f"device: {device}")
model = whisper.load_model("medium")
model = whisper.load_model(params.model_name)
if params.epoch > 0:
if params.avg > 1:
start = params.epoch - params.avg

View File

@ -2,10 +2,10 @@
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"loss_scale_window": 100,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
"min_loss_scale": 0.01
},
"zero_optimization": {
"stage": 1,
@ -19,8 +19,8 @@
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 5e-6,
"warmup_max_lr": 1e-5,
"warmup_min_lr": 1e-6,
"warmup_max_lr": 5e-6,
"warmup_num_steps": 100
}
},

View File

@ -2,6 +2,8 @@ import torch
import torch.nn as nn
import base64
import gzip
import warnings
from tqdm import tqdm
from dataclasses import dataclass
from typing import Dict, Iterable, Optional, Union
import os
@ -275,6 +277,11 @@ class Whisper(nn.Module):
@property
def is_multilingual(self):
return self.dims.n_vocab == 51865
return self.dims.n_vocab >= 51865
@property
def num_languages(self):
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
"""
@ -324,6 +331,7 @@ _MODELS = {
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
}

View File

@ -1,11 +1,11 @@
k2
kaldialign
lhotse==1.18
#git+https://github.com/lhotse-speech/lhotse
#lhotse==1.18
git+https://github.com/lhotse-speech/lhotse
sentencepiece
tensorboard
librosa
openai-whisper
openai-whisper==20231117
zhconv
WeTextProcessing
deepspeed

View File

@ -796,7 +796,7 @@ def run(rank, world_size, args):
logging.info(f"Number of model parameters: {num_param}")
tokenizer = whisper.tokenizer.get_tokenizer(
model.is_multilingual, language="zh", task="transcribe"
model.is_multilingual, num_languages=model.num_languages, language="zh", task="transcribe"
)
assert params.save_every_n >= params.average_period