#!/usr/bin/env bash export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=11 perturb_speed=true # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/aishell # You can find data_aishell, resource_aishell inside it. # You can download them from https://www.openslr.org/33 # # - $dl_dir/lm # This directory contains the language model downloaded from # https://huggingface.co/pkufool/aishell_lm # # - 3-gram.unpruned.arpa # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bbpe_xxx, # data/lang_bbpe_yyy if the array contains xxx, yyy vocab_sizes=( # 2000 # 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download data" # If you have pre-downloaded it to /path/to/aishell, # you can create a symlink # # ln -sfv /path/to/aishell $dl_dir/aishell # # The directory structure is # aishell/ # |-- data_aishell # | |-- transcript # | `-- wav # `-- resource_aishell # |-- lexicon.txt # `-- speaker.info if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then lhotse download aishell $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # # if [ ! -d $dl_dir/musan ]; then # lhotse download musan $dl_dir # fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare aishell manifest" # We assume that you have downloaded the aishell corpus # to $dl_dir/aishell if [ ! -f data/manifests/.aishell_manifests.done ]; then mkdir -p data/manifests lhotse prepare aishell $dl_dir/aishell data/manifests touch data/manifests/.aishell_manifests.done fi fi # if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then # log "Stage 2: Prepare musan manifest" # # We assume that you have downloaded the musan corpus # # to data/musan # if [ ! -f data/manifests/.musan_manifests.done ]; then # log "It may take 6 minutes" # mkdir -p data/manifests # lhotse prepare musan $dl_dir/musan data/manifests # touch data/manifests/.musan_manifests.done # fi # fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for aishell" if [ ! -f data/fbank/.aishell.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed} touch data/fbank/.aishell.done fi fi # if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then # log "Stage 30: Compute whisper fbank for aishell" # if [ ! -f data/fbank/.aishell.done ]; then # mkdir -p data/fbank # ./local/compute_whisper_fbank_aishell.py --perturb-speed True # touch data/fbank/.aishell.done # fi # fi if [ $stage -le 300 ] && [ $stop_stage -ge 300 ]; then log "Stage 30: Compute whisper fbank for aishell" if [ ! -f data/fbank/.aishell.done ]; then mkdir -p data/fbank ./local/compute_whisper_fbank_aishell.py --perturb-speed True --num-mel-bins 128 touch data/fbank/.aishell.done fi fi # if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then # log "Stage 4: Compute fbank for musan" # if [ ! -f data/fbank/.msuan.done ]; then # mkdir -p data/fbank # ./local/compute_fbank_musan.py # touch data/fbank/.msuan.done # fi # fi # if [ $stage -le 40 ] && [ $stop_stage -ge 40 ]; then # log "Stage 4: Compute fbank for musan" # if [ ! -f data/fbank/.msuan.done ]; then # mkdir -p data/fbank # ./local/compute_whisper_fbank_musan.py # touch data/fbank/.msuan.done # fi # fi # lang_phone_dir=data/lang_phone # if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then # log "Stage 5: Prepare phone based lang" # mkdir -p $lang_phone_dir # (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | # cat - $dl_dir/aishell/resource_aishell/lexicon.txt | # sort | uniq > $lang_phone_dir/lexicon.txt # ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir # if [ ! -f $lang_phone_dir/L_disambig.pt ]; then # ./local/prepare_lang.py --lang-dir $lang_phone_dir # fi # Train a bigram P for MMI training if [ ! -f $lang_phone_dir/transcript_words.txt ]; then log "Generate data to train phone based bigram P" aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text | cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt fi # if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then # ./local/convert_transcript_words_to_tokens.py \ # --lexicon $lang_phone_dir/uniq_lexicon.txt \ # --transcript $lang_phone_dir/transcript_words.txt \ # --oov "" \ # > $lang_phone_dir/transcript_tokens.txt # fi # if [ ! -f $lang_phone_dir/P.arpa ]; then # ./shared/make_kn_lm.py \ # -ngram-order 2 \ # -text $lang_phone_dir/transcript_tokens.txt \ # -lm $lang_phone_dir/P.arpa # fi # if [ ! -f $lang_phone_dir/P.fst.txt ]; then # python3 -m kaldilm \ # --read-symbol-table="$lang_phone_dir/tokens.txt" \ # --disambig-symbol='#0' \ # --max-order=2 \ # $lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt # fi # fi # lang_char_dir=data/lang_char # if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then # log "Stage 6: Prepare char based lang" # mkdir -p $lang_char_dir # # We reuse words.txt from phone based lexicon # # so that the two can share G.pt later. # # The transcripts in training set, generated in stage 5 # cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt # cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt | # cut -d " " -f 2- > $lang_char_dir/text # (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ # > $lang_char_dir/words.txt # cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ # | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt # num_lines=$(< $lang_char_dir/words.txt wc -l) # (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ # >> $lang_char_dir/words.txt # if [ ! -f $lang_char_dir/L_disambig.pt ]; then # ./local/prepare_char.py --lang-dir $lang_char_dir # fi # fi # if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then # log "Stage 7: Prepare Byte BPE based lang" # for vocab_size in ${vocab_sizes[@]}; do # lang_dir=data/lang_bbpe_${vocab_size} # mkdir -p $lang_dir # cp $lang_char_dir/words.txt $lang_dir # cp $lang_char_dir/text $lang_dir # if [ ! -f $lang_dir/bbpe.model ]; then # ./local/train_bbpe_model.py \ # --lang-dir $lang_dir \ # --vocab-size $vocab_size \ # --transcript $lang_dir/text # fi # if [ ! -f $lang_dir/L_disambig.pt ]; then # ./local/prepare_lang_bbpe.py --lang-dir $lang_dir # fi # done # fi # if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then # log "Stage 8: Prepare G" # mkdir -p data/lm # # Train LM on transcripts # if [ ! -f data/lm/3-gram.unpruned.arpa ]; then # python3 ./shared/make_kn_lm.py \ # -ngram-order 3 \ # -text $lang_char_dir/transcript_words.txt \ # -lm data/lm/3-gram.unpruned.arpa # fi # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="$lang_phone_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_phone.fst.txt python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt fi if [ ! -f $lang_char_dir/HLG.fst ]; then ./local/prepare_lang_fst.py \ --lang-dir $lang_char_dir \ --ngram-G ./data/lm/G_3_gram_char.fst.txt fi fi # if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then # log "Stage 9: Compile LG & HLG" # ./local/compile_hlg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone # ./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char # for vocab_size in ${vocab_sizes[@]}; do # lang_dir=data/lang_bbpe_${vocab_size} # ./local/compile_hlg.py --lang-dir $lang_dir --lm G_3_gram_char # done # ./local/compile_lg.py --lang-dir $lang_phone_dir --lm G_3_gram_phone # ./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char # for vocab_size in ${vocab_sizes[@]}; do # lang_dir=data/lang_bbpe_${vocab_size} # ./local/compile_lg.py --lang-dir $lang_dir --lm G_3_gram_char # done # fi # if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then # log "Stage 10: Generate LM training data" # log "Processing char based data" # out_dir=data/lm_training_char # mkdir -p $out_dir $dl_dir/lm # if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then # cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt # fi # # training words # ./local/prepare_char_lm_training_data.py \ # --lang-char data/lang_char \ # --lm-data $dl_dir/lm/aishell-train-word.txt \ # --lm-archive $out_dir/lm_data.pt # # valid words # if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then # aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt # aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid # find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid # awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text | # cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt # fi # ./local/prepare_char_lm_training_data.py \ # --lang-char data/lang_char \ # --lm-data $dl_dir/lm/aishell-valid-word.txt \ # --lm-archive $out_dir/lm_data_valid.pt # # test words # if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then # aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt # aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid # find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid # awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text | # cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt # fi # ./local/prepare_char_lm_training_data.py \ # --lang-char data/lang_char \ # --lm-data $dl_dir/lm/aishell-test-word.txt \ # --lm-archive $out_dir/lm_data_test.pt # fi # if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then # log "Stage 11: Sort LM training data" # # Sort LM training data by sentence length in descending order # # for ease of training. # # # # Sentence length equals to the number of tokens # # in a sentence. # out_dir=data/lm_training_char # mkdir -p $out_dir # ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/ # ./local/sort_lm_training_data.py \ # --in-lm-data $out_dir/lm_data.pt \ # --out-lm-data $out_dir/sorted_lm_data.pt \ # --out-statistics $out_dir/statistics.txt # ./local/sort_lm_training_data.py \ # --in-lm-data $out_dir/lm_data_valid.pt \ # --out-lm-data $out_dir/sorted_lm_data-valid.pt \ # --out-statistics $out_dir/statistics-valid.txt # ./local/sort_lm_training_data.py \ # --in-lm-data $out_dir/lm_data_test.pt \ # --out-lm-data $out_dir/sorted_lm_data-test.pt \ # --out-statistics $out_dir/statistics-test.txt # fi # if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then # log "Stage 11: Train RNN LM model" # python ../../../icefall/rnn_lm/train.py \ # --start-epoch 0 \ # --world-size 1 \ # --num-epochs 20 \ # --use-fp16 0 \ # --embedding-dim 512 \ # --hidden-dim 512 \ # --num-layers 2 \ # --batch-size 400 \ # --exp-dir rnnlm_char/exp \ # --lm-data $out_dir/sorted_lm_data.pt \ # --lm-data-valid $out_dir/sorted_lm_data-valid.pt \ # --vocab-size 4336 \ # --master-port 12345 # fi