* copy files from zipformer librispeech
* Add byte bpe training for aishell
* compile LG graph
* Support LG decoding
* Minor fixes
* black
* Minor fixes
* export & fix pretrain.py
* fix black
* Update RESULTS.md
* Fix export.py
* print out timestamps during decoding
* add word-level alignments
* support to compute mean symbol delay with word-level alignments
* print variance of symbol delay
* update doc
* support to compute delay for pruned_transducer_stateless4
* fix bug
* add doc
* Use jsonl for cutsets in the librispeech recipe.
* Use lazy cutset for all recipes.
* More fixes to use lazy CutSet.
* Remove force=True from logging to support Python < 3.8
* Minor fixes.
* Fix style issues.
* Copy files for editing.
* Use librispeech + gigaspeech with modified conformer.
* Support specifying number of workers for on-the-fly feature extraction.
* Feature extraction code for GigaSpeech.
* Combine XL splits lazily during training.
* Fix warnings in decoding.
* Add decoding code for GigaSpeech.
* Fix decoding the gigaspeech dataset.
We have to use the decoder/joiner networks for the GigaSpeech dataset.
* Disable speed perturbe for XL subset.
* Compute the Nbest oracle WER for RNN-T decoding.
* Minor fixes.
* Minor fixes.
* Add results.
* Update results.
* Update CI.
* Update results.
* Fix style issues.
* Update results.
* Fix style issues.
* Begin to use multiple datasets.
* Finish preparing training datasets.
* Minor fixes
* Copy files.
* Finish training code.
* Display losses for gigaspeech and librispeech separately.
* Fix decode.py
* Make the probability to select a batch from GigaSpeech configurable.
* Update results.
* Minor fixes.
* Begin to add RNN-T training for librispeech.
* Copy files from conformer_ctc.
Will edit it.
* Use conformer/transformer model as encoder.
* Begin to add training script.
* Add training code.
* Remove long utterances to avoid OOM when a large max_duraiton is used.
* Begin to add decoding script.
* Add decoding script.
* Minor fixes.
* Add beam search.
* Use LSTM layers for the encoder.
Need more tunings.
* Use stateless decoder.
* Minor fixes to make it ready for merge.
* Fix README.
* Update RESULT.md to include RNN-T Conformer.
* Minor fixes.
* Fix tests.
* Minor fixes.
* Minor fixes.
* Fix tests.
* Add recipe for the yes_no dataset.
* Refactoring: Remove unused code.
* Add Colab notebook for the yesno dataset.
* Add GitHub actions to run yesno.
* Fix a typo.
* Minor fixes.
* Train more epochs for GitHub actions.
* Minor fixes.
* Minor fixes.
* Fix style issues.