Support HLG decoding using OpenFst with kaldi decoders (#1275)

This commit is contained in:
Fangjun Kuang 2023-09-27 14:49:27 +08:00 committed by GitHub
parent 2318c3fbd0
commit 772ee3955b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 412 additions and 56 deletions

View File

@ -10,16 +10,30 @@ log() {
cd egs/librispeech/ASR
repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
git lfs install
# repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
log "Downloading pre-trained model from $repo_url"
git clone $repo_url
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "exp/pretrained.pt"
git lfs pull --include "data/lang_bpe_500/HLG.pt"
git lfs pull --include "data/lang_bpe_500/L.pt"
git lfs pull --include "data/lang_bpe_500/L_disambig.pt"
git lfs pull --include "data/lang_bpe_500/Linv.pt"
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "data/lang_bpe_500/lexicon.txt"
git lfs pull --include "data/lang_bpe_500/lexicon_disambig.txt"
git lfs pull --include "data/lang_bpe_500/tokens.txt"
git lfs pull --include "data/lang_bpe_500/words.txt"
git lfs pull --include "data/lm/G_3_gram.fst.txt"
popd
log "Display test files"
tree $repo/
ls -lh $repo/test_wavs/*.flac
ls -lh $repo/test_wavs/*.wav
log "CTC decoding"
@ -28,9 +42,9 @@ log "CTC decoding"
--num-classes 500 \
--checkpoint $repo/exp/pretrained.pt \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.flac \
$repo/test_wavs/1221-135766-0001.flac \
$repo/test_wavs/1221-135766-0002.flac
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "HLG decoding"
@ -41,9 +55,9 @@ log "HLG decoding"
--tokens $repo/data/lang_bpe_500/tokens.txt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
$repo/test_wavs/1089-134686-0001.flac \
$repo/test_wavs/1221-135766-0001.flac \
$repo/test_wavs/1221-135766-0002.flac
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "CTC decoding on CPU with kaldi decoders using OpenFst"
@ -65,7 +79,8 @@ ls -lh $repo/exp
log "Generating H.fst, HL.fst"
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500 --ngram-G $repo/data/lm/G_3_gram.fst.txt
ls -lh $repo/data/lang_bpe_500
log "Decoding with H on CPU with OpenFst"
@ -74,9 +89,9 @@ log "Decoding with H on CPU with OpenFst"
--nn-model $repo/exp/cpu_jit.pt \
--H $repo/data/lang_bpe_500/H.fst \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.flac \
$repo/test_wavs/1221-135766-0001.flac \
$repo/test_wavs/1221-135766-0002.flac
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "Decoding with HL on CPU with OpenFst"
@ -84,6 +99,16 @@ log "Decoding with HL on CPU with OpenFst"
--nn-model $repo/exp/cpu_jit.pt \
--HL $repo/data/lang_bpe_500/HL.fst \
--words $repo/data/lang_bpe_500/words.txt \
$repo/test_wavs/1089-134686-0001.flac \
$repo/test_wavs/1221-135766-0001.flac \
$repo/test_wavs/1221-135766-0002.flac
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "Decoding with HLG on CPU with OpenFst"
./conformer_ctc/jit_pretrained_decode_with_HLG.py \
--nn-model $repo/exp/cpu_jit.pt \
--HLG $repo/data/lang_bpe_500/HLG.fst \
--words $repo/data/lang_bpe_500/words.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -23,13 +23,20 @@ on:
pull_request:
types: [labeled]
workflow_dispatch:
inputs:
test-run:
description: 'Test (y/n)?'
required: true
default: 'y'
concurrency:
group: run_pre_trained_conformer_ctc-${{ github.ref }}
cancel-in-progress: true
jobs:
run_pre_trained_conformer_ctc:
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'ctc'
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.inputs.test-run == 'y'
runs-on: ${{ matrix.os }}
strategy:
matrix:

View File

@ -2,12 +2,12 @@
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file shows how to use a torchscript model for decoding with H
This file shows how to use a torchscript model for decoding with HL
on CPU using OpenFST and decoders from kaldi.
Usage:
./conformer_ctc/jit_pretrained_decode_with_H.py \
./conformer_ctc/jit_pretrained_decode_with_HL.py \
--nn-model ./conformer_ctc/exp/cpu_jit.pt \
--HL ./data/lang_bpe_500/HL.fst \
--words ./data/lang_bpe_500/words.txt \

View File

@ -0,0 +1,232 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file shows how to use a torchscript model for decoding with HLG
on CPU using OpenFST and decoders from kaldi.
Usage:
./conformer_ctc/jit_pretrained_decode_with_HLG.py \
--nn-model ./conformer_ctc/exp/cpu_jit.pt \
--HLG ./data/lang_bpe_500/HLG.fst \
--words ./data/lang_bpe_500/words.txt \
./download/LibriSpeech/test-clean/1089/134686/1089-134686-0002.flac \
./download/LibriSpeech/test-clean/1221/135766/1221-135766-0001.flac
Note that to generate ./conformer_ctc/exp/cpu_jit.pt,
you can use ./export.py --jit 1
"""
import argparse
import logging
import math
from typing import Dict, List
import kaldi_hmm_gmm
import kaldifeat
import kaldifst
import torch
import torchaudio
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
from torch.nn.utils.rnn import pad_sequence
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model",
type=str,
required=True,
help="""Path to the torchscript model.
You can use ./conformer_ctc/export.py --jit 1
to obtain it
""",
)
parser.add_argument(
"--words",
type=str,
required=True,
help="Path to words.txt",
)
parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.fst")
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. ",
)
return parser
def read_words(words_txt: str) -> Dict[int, str]:
id2word = dict()
with open(words_txt, encoding="utf-8") as f:
for line in f:
word, idx = line.strip().split()
id2word[int(idx)] = word
return id2word
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
if sample_rate != expected_sample_rate:
wave = torchaudio.functional.resample(
wave,
orig_freq=sample_rate,
new_freq=expected_sample_rate,
)
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
def decode(
filename: str,
nnet_output: torch.Tensor,
HLG: kaldifst,
id2word: Dict[int, str],
) -> List[str]:
"""
Args:
filename:
Path to the filename for decoding. Used for debugging.
nnet_output:
A 2-D float32 tensor of shape (num_frames, vocab_size). It
contains output from log_softmax.
HLG:
The HLG graph.
word2token:
A map mapping token ID to word string.
Returns:
Return a list of decoded words.
"""
logging.info(f"{filename}, {nnet_output.shape}")
decodable = DecodableCtc(nnet_output.cpu())
decoder_opts = FasterDecoderOptions(max_active=3000)
decoder = FasterDecoder(HLG, decoder_opts)
decoder.decode(decodable)
if not decoder.reached_final():
print(f"failed to decode {filename}")
return [""]
ok, best_path = decoder.get_best_path()
(
ok,
isymbols_out,
osymbols_out,
total_weight,
) = kaldifst.get_linear_symbol_sequence(best_path)
if not ok:
print(f"failed to get linear symbol sequence for {filename}")
return [""]
# are shifted by 1 during graph construction
hyps = [id2word[i] for i in osymbols_out]
return hyps
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
device = torch.device("cpu")
logging.info(f"device: {device}")
logging.info("Loading torchscript model")
model = torch.jit.load(args.nn_model)
model.eval()
model.to(device)
logging.info(f"Loading HLG from {args.HLG}")
HLG = kaldifst.StdVectorFst.read(args.HLG)
sample_rate = 16000
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = sample_rate
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=args.sound_files, expected_sample_rate=sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.shape[0] for f in features]
feature_lengths = torch.tensor(feature_lengths)
supervisions = dict()
supervisions["sequence_idx"] = torch.arange(len(features))
supervisions["start_frame"] = torch.zeros(len(features))
supervisions["num_frames"] = feature_lengths
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
nnet_output, _, _ = model(features, supervisions)
feature_lengths = ((feature_lengths - 1) // 2 - 1) // 2
id2word = read_words(args.words)
hyps = []
for i in range(nnet_output.shape[0]):
hyp = decode(
filename=args.sound_files[i],
nnet_output=nnet_output[i, : feature_lengths[i]],
HLG=HLG,
id2word=id2word,
)
hyps.append(hyp)
s = "\n"
for filename, hyp in zip(args.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -8,6 +8,7 @@ tokens.txt, and words.txt and generates the following files:
- H.fst
- HL.fst
- HLG.fst
Note that saved files are in OpenFst binary format.
@ -56,9 +57,114 @@ def get_args():
help="True if the lexicon has silence.",
)
parser.add_argument(
"--ngram-G",
type=str,
help="""If not empty, it is the filename of G used to build HLG.
For instance, --ngram-G=./data/lm/G_3_fst.txt
""",
)
return parser.parse_args()
def build_HL(
H: kaldifst.StdVectorFst,
L: kaldifst.StdVectorFst,
has_silence: bool,
lexicon: Lexicon,
) -> kaldifst.StdVectorFst:
if has_silence:
# We also need to change the input labels of L
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
else:
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
# from L after composition
add_disambig_self_loops(
H,
start=lexicon.token2id["#0"] + 1,
end=lexicon.max_disambig_id + 1,
)
kaldifst.arcsort(H, sort_type="olabel")
kaldifst.arcsort(L, sort_type="ilabel")
HL = kaldifst.compose(H, L)
kaldifst.determinize_star(HL)
disambig0 = lexicon.token2id["#0"] + 1
max_disambig = lexicon.max_disambig_id + 1
for state in kaldifst.StateIterator(HL):
for arc in kaldifst.ArcIterator(HL, state):
# If treat_ilabel_zero_specially is False, we always change it
# Otherwise, we only change non-zero input labels
if disambig0 <= arc.ilabel <= max_disambig:
arc.ilabel = 0
# Note: We are not composing L with G, so there is no need to add
# self-loops to L to handle #0
return HL
def build_HLG(
H: kaldifst.StdVectorFst,
L: kaldifst.StdVectorFst,
G: kaldifst.StdVectorFst,
has_silence: bool,
lexicon: Lexicon,
) -> kaldifst.StdVectorFst:
if has_silence:
# We also need to change the input labels of L
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
else:
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
# add-self-loops
token_disambig0 = lexicon.token2id["#0"] + 1
word_disambig0 = lexicon.word2id["#0"]
kaldifst.add_self_loops(L, isyms=[token_disambig0], osyms=[word_disambig0])
kaldifst.arcsort(L, sort_type="olabel")
kaldifst.arcsort(G, sort_type="ilabel")
LG = kaldifst.compose(L, G)
kaldifst.determinize_star(LG)
kaldifst.minimize_encoded(LG)
kaldifst.arcsort(LG, sort_type="ilabel")
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
# from L after composition
add_disambig_self_loops(
H,
start=lexicon.token2id["#0"] + 1,
end=lexicon.max_disambig_id + 1,
)
kaldifst.arcsort(H, sort_type="olabel")
HLG = kaldifst.compose(H, LG)
kaldifst.determinize_star(HLG)
disambig0 = lexicon.token2id["#0"] + 1
max_disambig = lexicon.max_disambig_id + 1
for state in kaldifst.StateIterator(HLG):
for arc in kaldifst.ArcIterator(HLG, state):
# If treat_ilabel_zero_specially is False, we always change it
# Otherwise, we only change non-zero input labels
if disambig0 <= arc.ilabel <= max_disambig:
arc.ilabel = 0
return HLG
def copy_fst(fst):
# Please don't use fst.copy()
return kaldifst.StdVectorFst(fst)
def main():
args = get_args()
lang_dir = args.lang_dir
@ -82,43 +188,29 @@ def main():
else:
L = make_lexicon_fst_no_silence(lexicon, attach_symbol_table=False)
if args.has_silence:
# We also need to change the input labels of L
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
else:
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
# from L after composition
add_disambig_self_loops(
H,
start=lexicon.token2id["#0"] + 1,
end=lexicon.max_disambig_id + 1,
)
with open("H_1.fst.txt", "w") as f:
print(H, file=f)
kaldifst.arcsort(H, sort_type="olabel")
kaldifst.arcsort(L, sort_type="ilabel")
logging.info("Building HL")
HL = kaldifst.compose(H, L)
kaldifst.determinize_star(HL)
disambig0 = lexicon.token2id["#0"] + 1
max_disambig = lexicon.max_disambig_id + 1
for state in kaldifst.StateIterator(HL):
for arc in kaldifst.ArcIterator(HL, state):
# If treat_ilabel_zero_specially is False, we always change it
# Otherwise, we only change non-zero input labels
if disambig0 <= arc.ilabel <= max_disambig:
arc.ilabel = 0
# Note: We are not composing L with G, so there is no need to add
# self-loops to L to handle #0
HL = build_HL(
H=copy_fst(H),
L=copy_fst(L),
has_silence=args.has_silence,
lexicon=lexicon,
)
HL.write(f"{lang_dir}/HL.fst")
if not args.ngram_G:
logging.info("Skip building HLG")
return
logging.info("Building HLG")
with open(args.ngram_G) as f:
G = kaldifst.compile(
s=f.read(),
acceptor=False,
)
HLG = build_HLG(H=H, L=L, G=G, has_silence=args.has_silence, lexicon=lexicon)
HLG.write(f"{lang_dir}/HLG.fst")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

View File

@ -244,7 +244,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
fi
if [ ! -f $lang_dir/HL.fst ]; then
./local/prepare_lang_fst.py --lang-dir $lang_dir
./local/prepare_lang_fst.py --lang-dir $lang_dir --ngram-G ./data/lm/G_3_gram.fst.txt
fi
done
fi