mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Support HLG decoding using OpenFst with kaldi decoders (#1275)
This commit is contained in:
parent
2318c3fbd0
commit
772ee3955b
61
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
61
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
@ -10,16 +10,30 @@ log() {
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
|
||||
git lfs install
|
||||
|
||||
# repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
|
||||
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git clone $repo_url
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
pushd $repo
|
||||
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/HLG.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/L.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/L_disambig.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/Linv.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||
git lfs pull --include "data/lang_bpe_500/lexicon.txt"
|
||||
git lfs pull --include "data/lang_bpe_500/lexicon_disambig.txt"
|
||||
git lfs pull --include "data/lang_bpe_500/tokens.txt"
|
||||
git lfs pull --include "data/lang_bpe_500/words.txt"
|
||||
git lfs pull --include "data/lm/G_3_gram.fst.txt"
|
||||
|
||||
popd
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.flac
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
log "CTC decoding"
|
||||
|
||||
@ -28,9 +42,9 @@ log "CTC decoding"
|
||||
--num-classes 500 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "HLG decoding"
|
||||
|
||||
@ -41,9 +55,9 @@ log "HLG decoding"
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "CTC decoding on CPU with kaldi decoders using OpenFst"
|
||||
|
||||
@ -65,7 +79,8 @@ ls -lh $repo/exp
|
||||
|
||||
log "Generating H.fst, HL.fst"
|
||||
|
||||
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500
|
||||
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500 --ngram-G $repo/data/lm/G_3_gram.fst.txt
|
||||
|
||||
ls -lh $repo/data/lang_bpe_500
|
||||
|
||||
log "Decoding with H on CPU with OpenFst"
|
||||
@ -74,9 +89,9 @@ log "Decoding with H on CPU with OpenFst"
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--H $repo/data/lang_bpe_500/H.fst \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "Decoding with HL on CPU with OpenFst"
|
||||
|
||||
@ -84,6 +99,16 @@ log "Decoding with HL on CPU with OpenFst"
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HL $repo/data/lang_bpe_500/HL.fst \
|
||||
--words $repo/data/lang_bpe_500/words.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "Decoding with HLG on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HLG.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HLG $repo/data/lang_bpe_500/HLG.fst \
|
||||
--words $repo/data/lang_bpe_500/words.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
@ -23,13 +23,20 @@ on:
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
test-run:
|
||||
description: 'Test (y/n)?'
|
||||
required: true
|
||||
default: 'y'
|
||||
|
||||
concurrency:
|
||||
group: run_pre_trained_conformer_ctc-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_pre_trained_conformer_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'ctc'
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.inputs.test-run == 'y'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
|
@ -2,12 +2,12 @@
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with H
|
||||
This file shows how to use a torchscript model for decoding with HL
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
./conformer_ctc/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model ./conformer_ctc/exp/cpu_jit.pt \
|
||||
--HL ./data/lang_bpe_500/HL.fst \
|
||||
--words ./data/lang_bpe_500/words.txt \
|
||||
|
232
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HLG.py
Executable file
232
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HLG.py
Executable file
@ -0,0 +1,232 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with HLG
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HLG.py \
|
||||
--nn-model ./conformer_ctc/exp/cpu_jit.pt \
|
||||
--HLG ./data/lang_bpe_500/HLG.fst \
|
||||
--words ./data/lang_bpe_500/words.txt \
|
||||
./download/LibriSpeech/test-clean/1089/134686/1089-134686-0002.flac \
|
||||
./download/LibriSpeech/test-clean/1221/135766/1221-135766-0001.flac
|
||||
|
||||
Note that to generate ./conformer_ctc/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldi_hmm_gmm
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./conformer_ctc/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_words(words_txt: str) -> Dict[int, str]:
|
||||
id2word = dict()
|
||||
with open(words_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
word, idx = line.strip().split()
|
||||
id2word[int(idx)] = word
|
||||
|
||||
return id2word
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
HLG: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
nnet_output:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
HLG:
|
||||
The HLG graph.
|
||||
word2token:
|
||||
A map mapping token ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {nnet_output.shape}")
|
||||
decodable = DecodableCtc(nnet_output.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HLG, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2word[i] for i in osymbols_out]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading HLG from {args.HLG}")
|
||||
HLG = kaldifst.StdVectorFst.read(args.HLG)
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.shape[0] for f in features]
|
||||
feature_lengths = torch.tensor(feature_lengths)
|
||||
|
||||
supervisions = dict()
|
||||
supervisions["sequence_idx"] = torch.arange(len(features))
|
||||
supervisions["start_frame"] = torch.zeros(len(features))
|
||||
supervisions["num_frames"] = feature_lengths
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output, _, _ = model(features, supervisions)
|
||||
feature_lengths = ((feature_lengths - 1) // 2 - 1) // 2
|
||||
|
||||
id2word = read_words(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
nnet_output=nnet_output[i, : feature_lengths[i]],
|
||||
HLG=HLG,
|
||||
id2word=id2word,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -8,6 +8,7 @@ tokens.txt, and words.txt and generates the following files:
|
||||
|
||||
- H.fst
|
||||
- HL.fst
|
||||
- HLG.fst
|
||||
|
||||
Note that saved files are in OpenFst binary format.
|
||||
|
||||
@ -56,9 +57,114 @@ def get_args():
|
||||
help="True if the lexicon has silence.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-G",
|
||||
type=str,
|
||||
help="""If not empty, it is the filename of G used to build HLG.
|
||||
For instance, --ngram-G=./data/lm/G_3_fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_HL(
|
||||
H: kaldifst.StdVectorFst,
|
||||
L: kaldifst.StdVectorFst,
|
||||
has_silence: bool,
|
||||
lexicon: Lexicon,
|
||||
) -> kaldifst.StdVectorFst:
|
||||
if has_silence:
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
else:
|
||||
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
|
||||
|
||||
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
|
||||
# from L after composition
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id + 1,
|
||||
)
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
kaldifst.arcsort(L, sort_type="ilabel")
|
||||
|
||||
HL = kaldifst.compose(H, L)
|
||||
kaldifst.determinize_star(HL)
|
||||
|
||||
disambig0 = lexicon.token2id["#0"] + 1
|
||||
max_disambig = lexicon.max_disambig_id + 1
|
||||
for state in kaldifst.StateIterator(HL):
|
||||
for arc in kaldifst.ArcIterator(HL, state):
|
||||
# If treat_ilabel_zero_specially is False, we always change it
|
||||
# Otherwise, we only change non-zero input labels
|
||||
if disambig0 <= arc.ilabel <= max_disambig:
|
||||
arc.ilabel = 0
|
||||
|
||||
# Note: We are not composing L with G, so there is no need to add
|
||||
# self-loops to L to handle #0
|
||||
|
||||
return HL
|
||||
|
||||
|
||||
def build_HLG(
|
||||
H: kaldifst.StdVectorFst,
|
||||
L: kaldifst.StdVectorFst,
|
||||
G: kaldifst.StdVectorFst,
|
||||
has_silence: bool,
|
||||
lexicon: Lexicon,
|
||||
) -> kaldifst.StdVectorFst:
|
||||
if has_silence:
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
else:
|
||||
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
|
||||
|
||||
# add-self-loops
|
||||
token_disambig0 = lexicon.token2id["#0"] + 1
|
||||
word_disambig0 = lexicon.word2id["#0"]
|
||||
|
||||
kaldifst.add_self_loops(L, isyms=[token_disambig0], osyms=[word_disambig0])
|
||||
|
||||
kaldifst.arcsort(L, sort_type="olabel")
|
||||
kaldifst.arcsort(G, sort_type="ilabel")
|
||||
LG = kaldifst.compose(L, G)
|
||||
kaldifst.determinize_star(LG)
|
||||
kaldifst.minimize_encoded(LG)
|
||||
|
||||
kaldifst.arcsort(LG, sort_type="ilabel")
|
||||
|
||||
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
|
||||
# from L after composition
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id + 1,
|
||||
)
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
|
||||
HLG = kaldifst.compose(H, LG)
|
||||
kaldifst.determinize_star(HLG)
|
||||
|
||||
disambig0 = lexicon.token2id["#0"] + 1
|
||||
max_disambig = lexicon.max_disambig_id + 1
|
||||
for state in kaldifst.StateIterator(HLG):
|
||||
for arc in kaldifst.ArcIterator(HLG, state):
|
||||
# If treat_ilabel_zero_specially is False, we always change it
|
||||
# Otherwise, we only change non-zero input labels
|
||||
if disambig0 <= arc.ilabel <= max_disambig:
|
||||
arc.ilabel = 0
|
||||
return HLG
|
||||
|
||||
|
||||
def copy_fst(fst):
|
||||
# Please don't use fst.copy()
|
||||
return kaldifst.StdVectorFst(fst)
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = args.lang_dir
|
||||
@ -82,43 +188,29 @@ def main():
|
||||
else:
|
||||
L = make_lexicon_fst_no_silence(lexicon, attach_symbol_table=False)
|
||||
|
||||
if args.has_silence:
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
else:
|
||||
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
|
||||
|
||||
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
|
||||
# from L after composition
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id + 1,
|
||||
)
|
||||
with open("H_1.fst.txt", "w") as f:
|
||||
print(H, file=f)
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
kaldifst.arcsort(L, sort_type="ilabel")
|
||||
|
||||
logging.info("Building HL")
|
||||
HL = kaldifst.compose(H, L)
|
||||
kaldifst.determinize_star(HL)
|
||||
|
||||
disambig0 = lexicon.token2id["#0"] + 1
|
||||
max_disambig = lexicon.max_disambig_id + 1
|
||||
for state in kaldifst.StateIterator(HL):
|
||||
for arc in kaldifst.ArcIterator(HL, state):
|
||||
# If treat_ilabel_zero_specially is False, we always change it
|
||||
# Otherwise, we only change non-zero input labels
|
||||
if disambig0 <= arc.ilabel <= max_disambig:
|
||||
arc.ilabel = 0
|
||||
|
||||
# Note: We are not composing L with G, so there is no need to add
|
||||
# self-loops to L to handle #0
|
||||
|
||||
HL = build_HL(
|
||||
H=copy_fst(H),
|
||||
L=copy_fst(L),
|
||||
has_silence=args.has_silence,
|
||||
lexicon=lexicon,
|
||||
)
|
||||
HL.write(f"{lang_dir}/HL.fst")
|
||||
|
||||
if not args.ngram_G:
|
||||
logging.info("Skip building HLG")
|
||||
return
|
||||
|
||||
logging.info("Building HLG")
|
||||
with open(args.ngram_G) as f:
|
||||
G = kaldifst.compile(
|
||||
s=f.read(),
|
||||
acceptor=False,
|
||||
)
|
||||
|
||||
HLG = build_HLG(H=H, L=L, G=G, has_silence=args.has_silence, lexicon=lexicon)
|
||||
HLG.write(f"{lang_dir}/HLG.fst")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
@ -244,7 +244,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/HL.fst ]; then
|
||||
./local/prepare_lang_fst.py --lang-dir $lang_dir
|
||||
./local/prepare_lang_fst.py --lang-dir $lang_dir --ngram-G ./data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
Loading…
x
Reference in New Issue
Block a user