16 Commits

Author SHA1 Message Date
Piotr Żelasko
1c7c79f2fc Find CUDA OOM batches before starting training 2021-10-14 21:28:11 -04:00
Fangjun Kuang
fee1f84b20
Test pre-trained model in CI (#80)
* Add CI to run pre-trained models.

* Minor fixes.

* Install kaldifeat

* Install a CPU version of PyTorch.

* Fix CI errors.

* Disable decoder layers in pretrained.py if it is not used.

* Clone pre-trained model from GitHub.

* Minor fixes.

* Minor fixes.

* Minor fixes.
2021-10-15 00:41:33 +08:00
Mingshuang Luo
391432b356
Update train.py ("10"--->"params.log_interval") (#76)
* Update train.py

* Update train.py

* Update train.py
2021-10-12 21:30:31 +08:00
Mingshuang Luo
597c5efdb1
Use LossRecord to record and print the loss for the training process (#62)
* Update index.rst (AS->ASR)

* Update conformer_ctc.rst (pretraind->pretrained)

* Fix some spelling errors.

* Fix some spelling errors.

* Use LossRecord to record and print loss in the training process

* Change the name "LossRecord" to "MetricsTracker"
2021-10-12 15:58:03 +08:00
Fangjun Kuang
a80e58e15d
Refactor decode.py to make it more readable and more modular. (#44)
* Refactor decode.py to make it more readable and more modular.

* Fix an error.

Nbest.fsa should always have token IDs as labels and
word IDs as aux_labels.

* Add nbest decoding.

* Compute edit distance with k2.

* Refactor nbest-oracle.

* Add rescore with nbest lists.

* Add whole-lattice rescoring.

* Add rescoring with attention decoder.

* Refactoring.

* Fixes after refactoring.

* Fix a typo.

* Minor fixes.

* Replace [] with () for shapes.

* Use k2 v1.9

* Use Levenshtein graphs/alignment from k2 v1.9

* [doc] Require k2 >= v1.9

* Minor fixes.
2021-09-20 15:44:54 +08:00
Wei Kang
24656e9749
Update docs and remove unnecessary arguments (#42)
* Fix typo in docs

* Update docs and remove unnecessary arguments

* Fix code style
2021-09-13 18:28:57 +08:00
Fangjun Kuang
1bd5dcc8ac
WIP: Add doc for the LibriSpeech recipe. (#24)
* WIP: Add doc for the LibriSpeech recipe.

* Add more doc for LibriSpeech recipe.

* Add more doc for the LibriSpeech recipe.

* More doc.
2021-08-24 20:28:32 +08:00
pkufool
19c4214958
Fix code style and add copyright. (#18)
* Fix style and add copyright

* Minor fix

* Remove duplicate lines

* Reformat conformer.py by black

* Reformat code style with black.

* Fix github workflows

* Fix lhotse installation

* Install icefall requirements

* Update k2 version, remove lhotse from test workflow
2021-08-23 10:43:59 +08:00
Fangjun Kuang
8469f9ae0a
Refactor asr_datamodule. (#15)
* WIP: Refactor asr_datamodule.

* Fixes after review.

* Minor fixes.
2021-08-21 09:53:46 +08:00
Fangjun Kuang
9d0cc9d829
Support computing nbest oracle WER. (#10)
* Support computing nbest oracle WER.

* Add scale to all nbest based decoding/rescoring methods.

* Add script to run pretrained models.

* Use torchaudio to extract features.

* Support decoding multiple files at the same time.

Also, use kaldifeat for feature extraction.

* Support decoding with LM rescoring and attention-decoder rescoring.

* Minor fixes.

* Replace scale with lattice-score-scale.

* Add usage example with a provided pretrained model.
2021-08-20 11:53:37 +08:00
pkufool
ef233486ae
The training script produce WER of 2.57% on librispeech test-clean (#13)
* Add grad_clip and weight-decay, small fix of dataloader and masking

* Add RESULTS.md
2021-08-20 10:08:08 +08:00
Fangjun Kuang
12a2fd023e
Add doc about installation and usage (#7)
* Add readme.

* Add TOC.

* fix typos

* Minor fixes after review.
2021-08-12 12:44:04 +08:00
Fangjun Kuang
5a0b9bcb23
Refactoring (#4)
* Fix an error in TDNN-LSTM training.

* WIP: Refactoring

* Refactor transformer.py

* Remove unused code.

* Minor fixes.
2021-08-04 14:53:02 +08:00
Fangjun Kuang
398ed80d7a Minor fixes to support DDP training. 2021-07-31 15:26:57 +08:00
Fangjun Kuang
b94d97da37 Disable gradient computation in evaluation mode. 2021-07-29 20:37:31 +08:00
Fangjun Kuang
acc63a9172 WIP: Add BPE training code. 2021-07-29 20:23:52 +08:00