Use LossRecord to record and print the loss for the training process (#62)

* Update index.rst (AS->ASR)

* Update conformer_ctc.rst (pretraind->pretrained)

* Fix some spelling errors.

* Fix some spelling errors.

* Use LossRecord to record and print loss in the training process

* Change the name "LossRecord" to "MetricsTracker"
This commit is contained in:
Mingshuang Luo 2021-10-12 15:58:03 +08:00 committed by GitHub
parent beb54ddb61
commit 597c5efdb1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 222 additions and 274 deletions

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang)
# Wei Kang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -21,13 +22,15 @@ import argparse
import logging
from pathlib import Path
from shutil import copyfile
from typing import Optional
from typing import Optional, Tuple
import k2
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from torch import Tensor
from asr_datamodule import LibriSpeechAsrDataModule
from conformer import Conformer
from lhotse.utils import fix_random_seed
@ -43,6 +46,7 @@ from icefall.dist import cleanup_dist, setup_dist
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
MetricsTracker,
encode_supervisions,
setup_logger,
str2bool,
@ -287,7 +291,7 @@ def compute_loss(
batch: dict,
graph_compiler: BpeCtcTrainingGraphCompiler,
is_training: bool,
):
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
@ -367,15 +371,17 @@ def compute_loss(
loss = ctc_loss
att_loss = torch.tensor([0])
# train_frames and valid_frames are used for printing.
if is_training:
params.train_frames = supervision_segments[:, 2].sum().item()
else:
params.valid_frames = supervision_segments[:, 2].sum().item()
assert loss.requires_grad == is_training
return loss, ctc_loss.detach(), att_loss.detach()
info = MetricsTracker()
info["frames"] = supervision_segments[:, 2].sum().item()
info["ctc_loss"] = ctc_loss.detach().cpu().item()
if params.att_rate != 0.0:
info["att_loss"] = att_loss.detach().cpu().item()
info["loss"] = loss.detach().cpu().item()
return loss, info
def compute_validation_loss(
@ -384,18 +390,14 @@ def compute_validation_loss(
graph_compiler: BpeCtcTrainingGraphCompiler,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> None:
"""Run the validation process. The validation loss
is saved in `params.valid_loss`.
"""
) -> MetricsTracker:
"""Run the validation process."""
model.eval()
tot_loss = 0.0
tot_ctc_loss = 0.0
tot_att_loss = 0.0
tot_frames = 0.0
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss, ctc_loss, att_loss = compute_loss(
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
@ -403,36 +405,17 @@ def compute_validation_loss(
is_training=False,
)
assert loss.requires_grad is False
assert ctc_loss.requires_grad is False
assert att_loss.requires_grad is False
loss_cpu = loss.detach().cpu().item()
tot_loss += loss_cpu
tot_ctc_loss += ctc_loss.detach().cpu().item()
tot_att_loss += att_loss.detach().cpu().item()
tot_frames += params.valid_frames
tot_loss = tot_loss + loss_info
if world_size > 1:
s = torch.tensor(
[tot_loss, tot_ctc_loss, tot_att_loss, tot_frames],
device=loss.device,
)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
s = s.cpu().tolist()
tot_loss = s[0]
tot_ctc_loss = s[1]
tot_att_loss = s[2]
tot_frames = s[3]
tot_loss.reduce(loss.device)
params.valid_loss = tot_loss / tot_frames
params.valid_ctc_loss = tot_ctc_loss / tot_frames
params.valid_att_loss = tot_att_loss / tot_frames
if params.valid_loss < params.best_valid_loss:
loss_value = tot_loss["loss"] / tot_loss["frames"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = params.valid_loss
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
@ -471,24 +454,21 @@ def train_one_epoch(
"""
model.train()
tot_loss = 0.0 # sum of losses over all batches
tot_ctc_loss = 0.0
tot_att_loss = 0.0
tot_loss = MetricsTracker()
tot_frames = 0.0 # sum of frames over all batches
params.tot_loss = 0.0
params.tot_frames = 0.0
for batch_idx, batch in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
loss, ctc_loss, att_loss = compute_loss(
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
graph_compiler=graph_compiler,
is_training=True,
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
@ -498,75 +478,26 @@ def train_one_epoch(
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
loss_cpu = loss.detach().cpu().item()
ctc_loss_cpu = ctc_loss.detach().cpu().item()
att_loss_cpu = att_loss.detach().cpu().item()
tot_frames += params.train_frames
tot_loss += loss_cpu
tot_ctc_loss += ctc_loss_cpu
tot_att_loss += att_loss_cpu
params.tot_frames += params.train_frames
params.tot_loss += loss_cpu
tot_avg_loss = tot_loss / tot_frames
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
tot_avg_att_loss = tot_att_loss / tot_frames
if batch_idx % params.log_interval == 0:
logging.info(
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
f"batch avg ctc loss {ctc_loss_cpu/params.train_frames:.4f}, "
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
f"total avg ctc loss: {tot_avg_ctc_loss:.4f}, "
f"total avg att loss: {tot_avg_att_loss:.4f}, "
f"total avg loss: {tot_avg_loss:.4f}, "
f"batch size: {batch_size}"
f"Epoch {params.cur_epoch}, "
f"batch {batch_idx}, loss[{loss_info}], "
f"tot_loss[{tot_loss}], batch size: {batch_size}"
)
if batch_idx % 10 == 0:
if tb_writer is not None:
tb_writer.add_scalar(
"train/current_ctc_loss",
ctc_loss_cpu / params.train_frames,
params.batch_idx_train,
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tb_writer.add_scalar(
"train/current_att_loss",
att_loss_cpu / params.train_frames,
params.batch_idx_train,
tot_loss.write_summary(
tb_writer, "train/tot_", params.batch_idx_train
)
tb_writer.add_scalar(
"train/current_loss",
loss_cpu / params.train_frames,
params.batch_idx_train,
)
tb_writer.add_scalar(
"train/tot_avg_ctc_loss",
tot_avg_ctc_loss,
params.batch_idx_train,
)
tb_writer.add_scalar(
"train/tot_avg_att_loss",
tot_avg_att_loss,
params.batch_idx_train,
)
tb_writer.add_scalar(
"train/tot_avg_loss",
tot_avg_loss,
params.batch_idx_train,
)
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
tot_loss = 0.0 # sum of losses over all batches
tot_ctc_loss = 0.0
tot_att_loss = 0.0
tot_frames = 0.0 # sum of frames over all batches
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
compute_validation_loss(
logging.info("Computing validation loss")
valid_info = compute_validation_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
@ -574,33 +505,14 @@ def train_one_epoch(
world_size=world_size,
)
model.train()
logging.info(
f"Epoch {params.cur_epoch}, "
f"valid ctc loss {params.valid_ctc_loss:.4f},"
f"valid att loss {params.valid_att_loss:.4f},"
f"valid loss {params.valid_loss:.4f},"
f" best valid loss: {params.best_valid_loss:.4f} "
f"best valid epoch: {params.best_valid_epoch}"
)
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
if tb_writer is not None:
tb_writer.add_scalar(
"train/valid_ctc_loss",
params.valid_ctc_loss,
params.batch_idx_train,
)
tb_writer.add_scalar(
"train/valid_att_loss",
params.valid_att_loss,
params.batch_idx_train,
)
tb_writer.add_scalar(
"train/valid_loss",
params.valid_loss,
params.batch_idx_train,
valid_info.write_summary(
tb_writer, "train/valid_", params.batch_idx_train
)
params.train_loss = params.tot_loss / params.tot_frames
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss

View File

@ -57,13 +57,13 @@ log() {
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: Download LM"
log "Stage -1: Download LM"
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
./local/download_lm.py --out-dir=$dl_dir/lm
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriSpeech,
# you can create a symlink
@ -126,7 +126,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "State 6: Prepare BPE based lang"
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}

View File

@ -1,5 +1,6 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -20,14 +21,15 @@ import argparse
import logging
from pathlib import Path
from shutil import copyfile
from typing import Optional
from typing import Optional, Tuple
import k2
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch import Tensor
from asr_datamodule import LibriSpeechAsrDataModule
from lhotse.utils import fix_random_seed
from model import TdnnLstm
@ -43,6 +45,7 @@ from icefall.graph_compiler import CtcTrainingGraphCompiler
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
MetricsTracker,
encode_supervisions,
setup_logger,
str2bool,
@ -267,7 +270,7 @@ def compute_loss(
batch: dict,
graph_compiler: CtcTrainingGraphCompiler,
is_training: bool,
):
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
@ -324,13 +327,11 @@ def compute_loss(
assert loss.requires_grad == is_training
# train_frames and valid_frames are used for printing.
if is_training:
params.train_frames = supervision_segments[:, 2].sum().item()
else:
params.valid_frames = supervision_segments[:, 2].sum().item()
info = MetricsTracker()
info["frames"] = supervision_segments[:, 2].sum().item()
info["loss"] = loss.detach().cpu().item()
return loss
return loss, info
def compute_validation_loss(
@ -339,16 +340,16 @@ def compute_validation_loss(
graph_compiler: CtcTrainingGraphCompiler,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> None:
) -> MetricsTracker:
"""Run the validation process. The validation loss
is saved in `params.valid_loss`.
"""
model.eval()
tot_loss = 0.0
tot_frames = 0.0
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss = compute_loss(
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
@ -357,22 +358,18 @@ def compute_validation_loss(
)
assert loss.requires_grad is False
loss_cpu = loss.detach().cpu().item()
tot_loss += loss_cpu
tot_frames += params.valid_frames
tot_loss = tot_loss + loss_info
if world_size > 1:
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
s = s.cpu().tolist()
tot_loss = s[0]
tot_frames = s[1]
tot_loss.reduce(loss.device)
params.valid_loss = tot_loss / tot_frames
loss_value = tot_loss["loss"] / tot_loss["frames"]
if params.valid_loss < params.best_valid_loss:
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = params.valid_loss
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
@ -411,67 +408,45 @@ def train_one_epoch(
"""
model.train()
tot_loss = 0.0 # reset after params.reset_interval of batches
tot_frames = 0.0 # reset after params.reset_interval of batches
params.tot_loss = 0.0
params.tot_frames = 0.0
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
loss = compute_loss(
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
graph_compiler=graph_compiler,
is_training=True,
)
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
# summary stats.
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
optimizer.zero_grad()
loss.backward()
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
loss_cpu = loss.detach().cpu().item()
tot_frames += params.train_frames
tot_loss += loss_cpu
tot_avg_loss = tot_loss / tot_frames
params.tot_frames += params.train_frames
params.tot_loss += loss_cpu
if batch_idx % params.log_interval == 0:
logging.info(
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
f"total avg loss: {tot_avg_loss:.4f}, "
f"batch size: {batch_size}"
f"Epoch {params.cur_epoch}, "
f"batch {batch_idx}, loss[{loss_info}], "
f"tot_loss[{tot_loss}], batch size: {batch_size}"
)
if batch_idx % 10 == 0:
if tb_writer is not None:
tb_writer.add_scalar(
"train/current_loss",
loss_cpu / params.train_frames,
params.batch_idx_train,
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tb_writer.add_scalar(
"train/tot_avg_loss",
tot_avg_loss,
params.batch_idx_train,
tot_loss.write_summary(
tb_writer, "train/tot_", params.batch_idx_train
)
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
tot_loss = 0
tot_frames = 0
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
compute_validation_loss(
valid_info = compute_validation_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
@ -479,13 +454,16 @@ def train_one_epoch(
world_size=world_size,
)
model.train()
logging.info(
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
f" best valid loss: {params.best_valid_loss:.4f} "
f"best valid epoch: {params.best_valid_epoch}"
)
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
if tb_writer is not None:
valid_info.write_summary(
tb_writer,
"train/valid_",
params.batch_idx_train,
)
params.train_loss = params.tot_loss / params.tot_frames
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch

View File

@ -24,7 +24,7 @@ log() {
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: Download data"
log "Stage 0: Download data"
mkdir -p $dl_dir
if [ ! -f $dl_dir/waves_yesno/.completed ]; then

View File

@ -4,14 +4,14 @@ import argparse
import logging
from pathlib import Path
from shutil import copyfile
from typing import Optional
from typing import Optional, Tuple
import k2
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch import Tensor
from asr_datamodule import YesNoAsrDataModule
from lhotse.utils import fix_random_seed
from model import Tdnn
@ -24,7 +24,7 @@ from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.dist import cleanup_dist, setup_dist
from icefall.graph_compiler import CtcTrainingGraphCompiler
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, setup_logger, str2bool
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
def get_parser():
@ -122,6 +122,8 @@ def get_params() -> AttributeDict:
- valid_interval: Run validation if batch_idx % valid_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- beam_size: It is used in k2.ctc_loss
- reduction: It is used in k2.ctc_loss
@ -142,6 +144,7 @@ def get_params() -> AttributeDict:
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 10,
"reset_interval": 20,
"valid_interval": 10,
"beam_size": 10,
"reduction": "sum",
@ -245,7 +248,7 @@ def compute_loss(
batch: dict,
graph_compiler: CtcTrainingGraphCompiler,
is_training: bool,
):
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
@ -305,13 +308,11 @@ def compute_loss(
assert loss.requires_grad == is_training
# train_frames and valid_frames are used for printing.
if is_training:
params.train_frames = supervision_segments[:, 2].sum().item()
else:
params.valid_frames = supervision_segments[:, 2].sum().item()
info = MetricsTracker()
info["frames"] = supervision_segments[:, 2].sum().item()
info["loss"] = loss.detach().cpu().item()
return loss
return loss, info
def compute_validation_loss(
@ -320,16 +321,16 @@ def compute_validation_loss(
graph_compiler: CtcTrainingGraphCompiler,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> None:
) -> MetricsTracker:
"""Run the validation process. The validation loss
is saved in `params.valid_loss`.
"""
model.eval()
tot_loss = 0.0
tot_frames = 0.0
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss = compute_loss(
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
@ -338,22 +339,18 @@ def compute_validation_loss(
)
assert loss.requires_grad is False
loss_cpu = loss.detach().cpu().item()
tot_loss += loss_cpu
tot_frames += params.valid_frames
tot_loss = tot_loss + loss_info
if world_size > 1:
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
s = s.cpu().tolist()
tot_loss = s[0]
tot_frames = s[1]
tot_loss.reduce(loss.device)
params.valid_loss = tot_loss / tot_frames
loss_value = tot_loss["loss"] / tot_loss["frames"]
if params.valid_loss < params.best_valid_loss:
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = params.valid_loss
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
@ -392,57 +389,45 @@ def train_one_epoch(
"""
model.train()
tot_loss = 0.0 # sum of losses over all batches
tot_frames = 0.0 # sum of frames over all batches
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
loss = compute_loss(
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
graph_compiler=graph_compiler,
is_training=True,
)
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
# summary stats.
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
optimizer.zero_grad()
loss.backward()
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
loss_cpu = loss.detach().cpu().item()
tot_frames += params.train_frames
tot_loss += loss_cpu
tot_avg_loss = tot_loss / tot_frames
if batch_idx % params.log_interval == 0:
logging.info(
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
f"total avg loss: {tot_avg_loss:.4f}, "
f"batch size: {batch_size}"
f"Epoch {params.cur_epoch}, "
f"batch {batch_idx}, loss[{loss_info}], "
f"tot_loss[{tot_loss}], batch size: {batch_size}"
)
if batch_idx % 10 == 0:
if tb_writer is not None:
tb_writer.add_scalar(
"train/current_loss",
loss_cpu / params.train_frames,
params.batch_idx_train,
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tb_writer.add_scalar(
"train/tot_avg_loss",
tot_avg_loss,
params.batch_idx_train,
tot_loss.write_summary(
tb_writer, "train/tot_", params.batch_idx_train
)
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
compute_validation_loss(
valid_info = compute_validation_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
@ -450,19 +435,16 @@ def train_one_epoch(
world_size=world_size,
)
model.train()
logging.info(
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
f" best valid loss: {params.best_valid_loss:.4f} "
f"best valid epoch: {params.best_valid_epoch}"
)
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
if tb_writer is not None:
tb_writer.add_scalar(
"train/valid_loss",
params.valid_loss,
valid_info.write_summary(
tb_writer,
"train/valid_",
params.batch_idx_train,
)
params.train_loss = tot_loss / tot_frames
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch

View File

@ -1,4 +1,5 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../LICENSE for clarification regarding multiple authors
#
@ -17,6 +18,7 @@
import argparse
import logging
import collections
import os
import subprocess
from collections import defaultdict
@ -29,6 +31,7 @@ import k2
import kaldialign
import torch
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
Pathlike = Union[str, Path]
@ -166,8 +169,8 @@ def encode_supervisions(
supervisions: dict, subsampling_factor: int
) -> Tuple[torch.Tensor, List[str]]:
"""
Encodes Lhotse's ``batch["supervisions"]`` dict into a pair of torch Tensor,
and a list of transcription strings.
Encodes Lhotse's ``batch["supervisions"]`` dict into
a pair of torch Tensor, and a list of transcription strings.
The supervision tensor has shape ``(batch_size, 3)``.
Its second dimension contains information about sequence index [0],
@ -272,13 +275,13 @@ def write_error_stats(
Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606
reference words (2337 correct)
- The difference between the reference transcript and predicted results.
- The difference between the reference transcript and predicted result.
An instance is given below::
THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES
The above example shows that the reference word is `EDISON`, but it is
predicted to `ADDISON` (a substitution error).
The above example shows that the reference word is `EDISON`,
but it is predicted to `ADDISON` (a substitution error).
Another example is::
@ -419,3 +422,76 @@ def write_error_stats(
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
return float(tot_err_rate)
class MetricsTracker(collections.defaultdict):
def __init__(self):
# Passing the type 'int' to the base-class constructor
# makes undefined items default to int() which is zero.
# This class will play a role as metrics tracker.
# It can record many metrics, including but not limited to loss.
super(MetricsTracker, self).__init__(int)
def __add__(self, other: "MetricsTracker") -> "MetricsTracker":
ans = MetricsTracker()
for k, v in self.items():
ans[k] = v
for k, v in other.items():
ans[k] = ans[k] + v
return ans
def __mul__(self, alpha: float) -> "MetricsTracker":
ans = MetricsTracker()
for k, v in self.items():
ans[k] = v * alpha
return ans
def __str__(self) -> str:
ans = ""
for k, v in self.norm_items():
norm_value = "%.4g" % v
ans += str(k) + "=" + str(norm_value) + ", "
frames = str(self["frames"])
ans += "over " + frames + " frames."
return ans
def norm_items(self) -> List[Tuple[str, float]]:
"""
Returns a list of pairs, like:
[('ctc_loss', 0.1), ('att_loss', 0.07)]
"""
num_frames = self["frames"] if "frames" in self else 1
ans = []
for k, v in self.items():
if k != "frames":
norm_value = float(v) / num_frames
ans.append((k, norm_value))
return ans
def reduce(self, device):
"""
Reduce using torch.distributed, which I believe ensures that
all processes get the total.
"""
keys = sorted(self.keys())
s = torch.tensor([float(self[k]) for k in keys], device=device)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
for k, v in zip(keys, s.cpu().tolist()):
self[k] = v
def write_summary(
self,
tb_writer: SummaryWriter,
prefix: str,
batch_idx: int,
) -> None:
"""Add logging information to a TensorBoard writer.
Args:
tb_writer: a TensorBoard writer
prefix: a prefix for the name of the loss, e.g. "train/valid_",
or "train/current_"
batch_idx: The current batch index, used as the x-axis of the plot.
"""
for k, v in self.norm_items():
tb_writer.add_scalar(prefix + k, v, batch_idx)