mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
WIP: Add doc for the LibriSpeech recipe. (#24)
* WIP: Add doc for the LibriSpeech recipe. * Add more doc for LibriSpeech recipe. * Add more doc for the LibriSpeech recipe. * More doc.
This commit is contained in:
parent
01da00dca0
commit
1bd5dcc8ac
@ -3,7 +3,7 @@
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
icefall
|
||||
Icefall
|
||||
=======
|
||||
|
||||
.. image:: _static/logo.png
|
||||
|
@ -1,2 +1,10 @@
|
||||
LibriSpeech
|
||||
===========
|
||||
|
||||
We provide the following models for the LibriSpeech dataset:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
librispeech/tdnn_lstm_ctc
|
||||
librispeech/conformer_ctc
|
||||
|
627
docs/source/recipes/librispeech/conformer_ctc.rst
Normal file
627
docs/source/recipes/librispeech/conformer_ctc.rst
Normal file
@ -0,0 +1,627 @@
|
||||
Confromer CTC
|
||||
=============
|
||||
|
||||
This tutorial shows you how to run a conformer ctc model
|
||||
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||
|
||||
|
||||
.. HINT::
|
||||
|
||||
We assume you have read the page :ref:`install icefall` and have setup
|
||||
the environment for ``icefall``.
|
||||
|
||||
.. HINT::
|
||||
|
||||
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||
|
||||
In this tutorial, you will learn:
|
||||
|
||||
- (1) How to prepare data for training and decoding
|
||||
- (2) How to start the training, either with a single GPU or multiple GPUs
|
||||
- (3) How to do decoding after training, with n-gram LM rescoring and attention decoder rescoring
|
||||
- (4) How to use a pre-trained model, provided by us
|
||||
|
||||
Data preparation
|
||||
----------------
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./prepare.sh
|
||||
|
||||
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||
All you need to do is to run it.
|
||||
|
||||
The data preparation contains several stages, you can use the following two
|
||||
options:
|
||||
|
||||
- ``--stage``
|
||||
- ``--stop-stage``
|
||||
|
||||
to control which stage(s) should be run. By default, all stages are executed.
|
||||
|
||||
|
||||
For example,
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||
|
||||
means to run only stage 0.
|
||||
|
||||
To run stage 2 to stage 5, use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||
|
||||
.. HINT::
|
||||
|
||||
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||
``./prepare.sh`` won't re-download them.
|
||||
|
||||
.. NOTE::
|
||||
|
||||
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||
are saved in ``./data`` directory.
|
||||
|
||||
|
||||
Training
|
||||
--------
|
||||
|
||||
Configurable options
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/train.py --help
|
||||
|
||||
shows you the training options that can be passed from the commandline.
|
||||
The following options are used quite often:
|
||||
|
||||
- ``--full-libri``
|
||||
|
||||
If it's True, the training part uses all the training data, i.e.,
|
||||
960 hours. Otherwise, the training part uses only the subset
|
||||
``train-clean-100``, which has 100 hours of training data.
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||
If ``--full-libri`` is True, each epoch actually processes
|
||||
``3x960 == 2880`` hours of data.
|
||||
|
||||
- ``--num-epochs``
|
||||
|
||||
It is the number of epochs to train. For instance,
|
||||
``./conformer_ctc/train.py --num-epochs 30`` trains for 30 epochs
|
||||
and generates ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-29.pt``
|
||||
in the folder ``./conformer_ctc/exp``.
|
||||
|
||||
- ``--start-epoch``
|
||||
|
||||
It's used to resume training.
|
||||
``./conformer_ctc/train.py --start-epoch 10`` loads the
|
||||
checkpoint ``./conformer_ctc/exp/epoch-9.pt`` and starts
|
||||
training from epoch 10, based on the state from epoch 9.
|
||||
|
||||
- ``--world-size``
|
||||
|
||||
It is used for multi-GPU single-machine DDP training.
|
||||
|
||||
- (a) If it is 1, then no DDP training is used.
|
||||
|
||||
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||
|
||||
The following shows some use cases with it.
|
||||
|
||||
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||
GPU 2 for training. You can do the following:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||
$ ./conformer_ctc/train.py --world-size 2
|
||||
|
||||
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||
for training. You can do the following:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/train.py --world-size 4
|
||||
|
||||
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||
for training. You can do the following:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ export CUDA_VISIBLE_DEVICES="3"
|
||||
$ ./conformer_ctc/train.py --world-size 1
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
Only multi-GPU single-machine DDP training is implemented at present.
|
||||
Multi-GPU multi-machine DDP training will be added later.
|
||||
|
||||
- ``--max-duration``
|
||||
|
||||
It specifies the number of seconds over all utterances in a
|
||||
batch, before **padding**.
|
||||
If you encounter CUDA OOM, please reduce it. For instance, if
|
||||
your are using V100 NVIDIA GPU, we recommend you to set it to ``200``.
|
||||
|
||||
.. HINT::
|
||||
|
||||
Due to padding, the number of seconds of all utterances in a
|
||||
batch will usually be larger than ``--max-duration``.
|
||||
|
||||
A larger value for ``--max-duration`` may cause OOM during training,
|
||||
while a smaller value may increase the training time. You have to
|
||||
tune it.
|
||||
|
||||
|
||||
Pre-configured options
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
There are some training options, e.g., learning rate,
|
||||
number of warmup steps, results dir, etc,
|
||||
that are not passed from the commandline.
|
||||
They are pre-configured by the function ``get_params()`` in
|
||||
`conformer_ctc/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/conformer_ctc/train.py>`_
|
||||
|
||||
You don't need to change these pre-configured parameters. If you really need to change
|
||||
them, please modify ``./conformer_ctc/train.py`` directly.
|
||||
|
||||
|
||||
Training logs
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
Training logs and checkpoints are saved in ``conformer_ctc/exp``.
|
||||
You will find the following files in that directory:
|
||||
|
||||
- ``epoch-0.pt``, ``epoch-1.pt``, ...
|
||||
|
||||
These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
|
||||
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./conformer_ctc/train.py --start-epoch 11
|
||||
|
||||
- ``tensorboard/``
|
||||
|
||||
This folder contains TensorBoard logs. Training loss, validation loss, learning
|
||||
rate, etc, are recorded in these logs. You can visualize them by:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd conformer_ctc/exp/tensorboard
|
||||
$ tensorboard dev upload --logdir . --description "Conformer CTC training for LibriSpeech with icefall"
|
||||
|
||||
It will print something like below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
TensorFlow installation not found - running with reduced feature set.
|
||||
Upload started and will continue reading any new data as it's added to the logdir.
|
||||
|
||||
To stop uploading, press Ctrl-C.
|
||||
|
||||
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/
|
||||
|
||||
[2021-08-24T16:42:43] Started scanning logdir.
|
||||
Uploading 4540 scalars...
|
||||
|
||||
Note there is a URL in the above output, click it and you will see
|
||||
the following screenshot:
|
||||
|
||||
.. figure:: images/librispeech-conformer-ctc-tensorboard-log.png
|
||||
:width: 600
|
||||
:alt: TensorBoard screenshot
|
||||
:align: center
|
||||
:target: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/
|
||||
|
||||
TensorBoard screenshot.
|
||||
|
||||
- ``log/log-train-xxxx``
|
||||
|
||||
It is the detailed training log in text format, same as the one
|
||||
you saw printed to the console during training.
|
||||
|
||||
Usage examples
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
The following shows typical use cases:
|
||||
|
||||
**Case 1**
|
||||
^^^^^^^^^^
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/train.py --max-duration 200 --full-libri 0
|
||||
|
||||
It uses ``--max-duration`` of 200 to avoid OOM. Also, it uses only
|
||||
a subset of the LibriSpeech data for training.
|
||||
|
||||
|
||||
**Case 2**
|
||||
^^^^^^^^^^
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ export CUDA_VISIBLE_DEVICES="0,3"
|
||||
$ ./conformer_ctc/train.py --world-size 2
|
||||
|
||||
It uses GPU 0 and GPU 3 for DDP training.
|
||||
|
||||
**Case 3**
|
||||
^^^^^^^^^^
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/train.py --num-epochs 10 --start-epoch 3
|
||||
|
||||
It loads checkpoint ``./conformer_ctc/exp/epoch-2.pt`` and starts
|
||||
training from epoch 3. Also, it trains for 10 epochs.
|
||||
|
||||
Decoding
|
||||
--------
|
||||
|
||||
The decoding part uses checkpoints saved by the training part, so you have
|
||||
to run the training part first.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/decode.py --help
|
||||
|
||||
shows the options for decoding.
|
||||
|
||||
The commonly used options are:
|
||||
|
||||
- ``--method``
|
||||
|
||||
This specifies the decoding method.
|
||||
|
||||
The following command uses attention decoder for rescoring:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
|
||||
|
||||
- ``--lattice-score-scale``
|
||||
|
||||
It is used to scaled down lattice scores so that we can more unique
|
||||
paths for rescoring.
|
||||
|
||||
- ``--max-duration``
|
||||
|
||||
It has the same meaning as the one during training. A larger
|
||||
value may cause OOM.
|
||||
|
||||
Pre-trained Model
|
||||
-----------------
|
||||
|
||||
We have uploaded the pre-trained model to
|
||||
`<https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc>`_.
|
||||
|
||||
We describe how to use the pre-trained model to transcribe a sound file or
|
||||
multiple sound files in the following.
|
||||
|
||||
Install kaldifeat
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used to
|
||||
extract features for a single sound file or multiple soundfiles
|
||||
at the same time.
|
||||
|
||||
Please refer to `<https://github.com/csukuangfj/kaldifeat>`_ for installation.
|
||||
|
||||
Download the pre-trained model
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The following commands describe how to download the pre-trained model:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ mkdir tmp
|
||||
$ cd tmp
|
||||
$ git lfs install
|
||||
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
You have to use ``git lfs`` to download the pre-trained model.
|
||||
|
||||
After downloading, you will have the following files:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ tree tmp
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
tmp
|
||||
`-- icefall_asr_librispeech_conformer_ctc
|
||||
|-- README.md
|
||||
|-- data
|
||||
| |-- lang_bpe
|
||||
| | |-- HLG.pt
|
||||
| | |-- bpe.model
|
||||
| | |-- tokens.txt
|
||||
| | `-- words.txt
|
||||
| `-- lm
|
||||
| `-- G_4_gram.pt
|
||||
|-- exp
|
||||
| `-- pretraind.pt
|
||||
`-- test_wavs
|
||||
|-- 1089-134686-0001.flac
|
||||
|-- 1221-135766-0001.flac
|
||||
|-- 1221-135766-0002.flac
|
||||
`-- trans.txt
|
||||
|
||||
6 directories, 11 files
|
||||
|
||||
**File descriptions**:
|
||||
|
||||
- ``data/lang_bpe/HLG.pt``
|
||||
|
||||
It is the decoding graph.
|
||||
|
||||
- ``data/lang_bpe/bpe.model``
|
||||
|
||||
It is a sentencepiece model. You can use it to reproduce our results.
|
||||
|
||||
- ``data/lang_bpe/tokens.txt``
|
||||
|
||||
It contains tokens and their IDs, generated from ``bpe.model``.
|
||||
Provided only for convenience so that you can look up the SOS/EOS ID easily.
|
||||
|
||||
- ``data/lang_bpe/words.txt``
|
||||
|
||||
It contains words and their IDs.
|
||||
|
||||
- ``data/lm/G_4_gram.pt``
|
||||
|
||||
It is a 4-gram LM, useful for LM rescoring.
|
||||
|
||||
- ``exp/pretrained.pt``
|
||||
|
||||
It contains pre-trained model parameters, obtained by averaging
|
||||
checkpoints from ``epoch-15.pt`` to ``epoch-34.pt``.
|
||||
Note: We have removed optimizer ``state_dict`` to reduce file size.
|
||||
|
||||
- ``test_waves/*.flac``
|
||||
|
||||
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
|
||||
|
||||
- `test_waves/trans.txt`
|
||||
|
||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||
|
||||
The information of the test sound files is listed below:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ soxi tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/*.flac
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||
File Size : 116k
|
||||
Bit Rate : 140k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||
File Size : 343k
|
||||
Bit Rate : 164k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||
File Size : 105k
|
||||
Bit Rate : 174k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Total Duration of 3 files: 00:00:28.16
|
||||
|
||||
Usage
|
||||
~~~~~
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py --help
|
||||
|
||||
displays the help information.
|
||||
|
||||
It supports three decoding methods:
|
||||
|
||||
- HLG decoding
|
||||
- HLG + n-gram LM rescoring
|
||||
- HLG + n-gram LM rescoring + attention decoder rescoring
|
||||
|
||||
HLG decoding
|
||||
^^^^^^^^^^^^
|
||||
|
||||
HLG decoding uses the best path of the decoding lattice as the decoding result.
|
||||
|
||||
The command to run HLG decoding is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
The output is given below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
|
||||
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
|
||||
|
||||
HLG decoding + LM rescoring
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It uses an n-gram LM to rescore the decoding lattice and the best
|
||||
path of the rescored lattice is the decoding result.
|
||||
|
||||
The command to run HLG decoding + LM rescoring is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
Its output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
|
||||
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
|
||||
|
||||
HLG decoding + LM rescoring + attention decoder rescoring
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It uses an n-gram LM to rescore the decoding lattice, extracts
|
||||
n paths from the rescored lattice, recores the extracted paths with
|
||||
an attention decoder. The path with the highest score is the decoding result.
|
||||
|
||||
The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method attention-decoder \
|
||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 1.3 \
|
||||
--attention-decoder-scale 1.2 \
|
||||
--lattice-score-scale 0.5 \
|
||||
--num-paths 100 \
|
||||
--sos-id 1 \
|
||||
--eos-id 1 \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
The output is below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
|
||||
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
|
||||
|
||||
Colab notebook
|
||||
--------------
|
||||
|
||||
We do provide a colab notebook for this recipe showing how to use a pre-trained model.
|
||||
|
||||
|librispeech asr conformer ctc colab notebook|
|
||||
|
||||
.. |librispeech asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing
|
||||
|
||||
.. HINT::
|
||||
|
||||
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to
|
||||
run ``HLG decoding + LM rescoring`` and
|
||||
``HLG decoding + LM rescoring + attention decoder rescoring``.
|
||||
Otherwise, you can only run ``HLG decoding`` with Colab.
|
||||
|
||||
**Congratulations!** You have finished the librispeech ASR recipe with
|
||||
conformer CTC models in ``icefall``.
|
Binary file not shown.
After Width: | Height: | Size: 422 KiB |
2
docs/source/recipes/librispeech/tdnn_lstm_ctc.rst
Normal file
2
docs/source/recipes/librispeech/tdnn_lstm_ctc.rst
Normal file
@ -0,0 +1,2 @@
|
||||
TDNN LSTM CTC
|
||||
=============
|
@ -1,7 +1,7 @@
|
||||
yesno
|
||||
=====
|
||||
|
||||
This page shows you how to run the ``yesno`` recipe. It contains:
|
||||
This page shows you how to run the `yesno <https://www.openslr.org/1>`_ recipe. It contains:
|
||||
|
||||
- (1) Prepare data for training
|
||||
- (2) Train a TDNN model
|
||||
|
@ -1,351 +1,4 @@
|
||||
|
||||
# How to use a pre-trained model to transcribe a sound file or multiple sound files
|
||||
|
||||
(See the bottom of this document for the link to a colab notebook.)
|
||||
|
||||
You need to prepare 4 files:
|
||||
|
||||
- a model checkpoint file, e.g., epoch-20.pt
|
||||
- HLG.pt, the decoding graph
|
||||
- words.txt, the word symbol table
|
||||
- a sound file, whose sampling rate has to be 16 kHz.
|
||||
Supported formats are those supported by `torchaudio.load()`,
|
||||
e.g., wav and flac.
|
||||
|
||||
Also, you need to install `kaldifeat`. Please refer to
|
||||
<https://github.com/csukuangfj/kaldifeat> for installation.
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py --help
|
||||
```
|
||||
|
||||
displays the help information.
|
||||
|
||||
## HLG decoding
|
||||
|
||||
Once you have the above files ready and have `kaldifeat` installed,
|
||||
you can run:
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
/path/to/your/sound.wav
|
||||
```
|
||||
|
||||
and you will see the transcribed result.
|
||||
|
||||
If you want to transcribe multiple files at the same time, you can use:
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
/path/to/your/sound1.wav \
|
||||
/path/to/your/sound2.wav \
|
||||
/path/to/your/sound3.wav
|
||||
```
|
||||
|
||||
**Note**: This is the fastest decoding method.
|
||||
|
||||
## HLG decoding + LM rescoring
|
||||
|
||||
`./conformer_ctc/pretrained.py` also supports `whole lattice LM rescoring`
|
||||
and `attention decoder rescoring`.
|
||||
|
||||
To use whole lattice LM rescoring, you also need the following files:
|
||||
|
||||
- G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh`
|
||||
|
||||
The command to run decoding with LM rescoring is:
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
/path/to/your/sound1.wav \
|
||||
/path/to/your/sound2.wav \
|
||||
/path/to/your/sound3.wav
|
||||
```
|
||||
|
||||
## HLG Decoding + LM rescoring + attention decoder rescoring
|
||||
|
||||
To use attention decoder for rescoring, you need the following extra information:
|
||||
|
||||
- sos token ID
|
||||
- eos token ID
|
||||
|
||||
The command to run decoding with attention decoder rescoring is:
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint /path/to/your/checkpoint.pt \
|
||||
--words-file /path/to/words.txt \
|
||||
--HLG /path/to/HLG.pt \
|
||||
--method attention-decoder \
|
||||
--G data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 1.3 \
|
||||
--attention-decoder-scale 1.2 \
|
||||
--lattice-score-scale 0.5 \
|
||||
--num-paths 100 \
|
||||
--sos-id 1 \
|
||||
--eos-id 1 \
|
||||
/path/to/your/sound1.wav \
|
||||
/path/to/your/sound2.wav \
|
||||
/path/to/your/sound3.wav
|
||||
```
|
||||
|
||||
# Decoding with a pre-trained model in action
|
||||
|
||||
We have uploaded a pre-trained model to <https://huggingface.co/pkufool/conformer_ctc>
|
||||
|
||||
The following shows the steps about the usage of the provided pre-trained model.
|
||||
|
||||
### (1) Download the pre-trained model
|
||||
|
||||
```bash
|
||||
sudo apt-get install git-lfs
|
||||
cd /path/to/icefall/egs/librispeech/ASR
|
||||
git lfs install
|
||||
mkdir tmp
|
||||
cd tmp
|
||||
git clone https://huggingface.co/pkufool/conformer_ctc
|
||||
```
|
||||
|
||||
**CAUTION**: You have to install `git-lfst` to download the pre-trained model.
|
||||
|
||||
You will find the following files:
|
||||
|
||||
```
|
||||
tmp
|
||||
`-- conformer_ctc
|
||||
|-- README.md
|
||||
|-- data
|
||||
| |-- lang_bpe
|
||||
| | |-- HLG.pt
|
||||
| | |-- bpe.model
|
||||
| | |-- tokens.txt
|
||||
| | `-- words.txt
|
||||
| `-- lm
|
||||
| `-- G_4_gram.pt
|
||||
|-- exp
|
||||
| `-- pretraind.pt
|
||||
`-- test_wavs
|
||||
|-- 1089-134686-0001.flac
|
||||
|-- 1221-135766-0001.flac
|
||||
|-- 1221-135766-0002.flac
|
||||
`-- trans.txt
|
||||
|
||||
6 directories, 11 files
|
||||
```
|
||||
|
||||
**File descriptions**:
|
||||
|
||||
- `data/lang_bpe/HLG.pt`
|
||||
|
||||
It is the decoding graph.
|
||||
|
||||
- `data/lang_bpe/bpe.model`
|
||||
|
||||
It is a sentencepiece model. You can use it to reproduce our results.
|
||||
|
||||
- `data/lang_bpe/tokens.txt`
|
||||
|
||||
It contains tokens and their IDs, generated from `bpe.model`.
|
||||
Provided only for convienice so that you can look up the SOS/EOS ID easily.
|
||||
|
||||
- `data/lang_bpe/words.txt`
|
||||
|
||||
It contains words and their IDs.
|
||||
|
||||
- `data/lm/G_4_gram.pt`
|
||||
|
||||
It is a 4-gram LM, useful for LM rescoring.
|
||||
|
||||
- `exp/pretrained.pt`
|
||||
|
||||
It contains pre-trained model parameters, obtained by averaging
|
||||
checkpoints from `epoch-15.pt` to `epoch-34.pt`.
|
||||
Note: We have removed optimizer `state_dict` to reduce file size.
|
||||
|
||||
- `test_waves/*.flac`
|
||||
|
||||
It contains some test sound files from LibriSpeech `test-clean` dataset.
|
||||
|
||||
- `test_waves/trans.txt`
|
||||
|
||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||
|
||||
The information of the test sound files is listed below:
|
||||
|
||||
```
|
||||
$ soxi tmp/conformer_ctc/test_wavs/*.flac
|
||||
|
||||
Input File : 'tmp/conformer_ctc/test_wavs/1089-134686-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||
File Size : 116k
|
||||
Bit Rate : 140k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||
File Size : 343k
|
||||
Bit Rate : 164k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0002.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||
File Size : 105k
|
||||
Bit Rate : 174k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Total Duration of 3 files: 00:00:28.16
|
||||
```
|
||||
|
||||
### (2) Use HLG decoding
|
||||
|
||||
```bash
|
||||
cd /path/to/icefall/egs/librispeech/ASR
|
||||
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
```
|
||||
|
||||
The output is given below:
|
||||
|
||||
```
|
||||
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
|
||||
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
|
||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
|
||||
```
|
||||
|
||||
### (3) Use HLG decoding + LM rescoring
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
```
|
||||
|
||||
The output is:
|
||||
|
||||
```
|
||||
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
|
||||
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
|
||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
|
||||
```
|
||||
|
||||
### (4) Use HLG decoding + LM rescoring + attention decoder rescoring
|
||||
|
||||
```bash
|
||||
./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method attention-decoder \
|
||||
--G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 1.3 \
|
||||
--attention-decoder-scale 1.2 \
|
||||
--lattice-score-scale 0.5 \
|
||||
--num-paths 100 \
|
||||
--sos-id 1 \
|
||||
--eos-id 1 \
|
||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
```
|
||||
|
||||
The output is:
|
||||
|
||||
```
|
||||
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
|
||||
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
|
||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
|
||||
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
|
||||
```
|
||||
|
||||
**NOTE**: We provide a colab notebook for demonstration.
|
||||
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
||||
|
||||
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to
|
||||
run `HLG decoding + LM rescoring` and `HLG decoding + LM rescoring + attention decoder rescoring`.
|
||||
Otherwise, you can only run `HLG decoding` with Colab.
|
||||
Please visit
|
||||
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html>
|
||||
for how to run this recipe.
|
||||
|
@ -57,28 +57,63 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=9,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="attention-decoder",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path with
|
||||
the highest score is the decoding result.
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice. Rescore the decoding lattice with an n-gram LM
|
||||
(e.g., a 4-gram LM), the best path of rescored lattice is the
|
||||
decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored lattice,
|
||||
the path with the highest score is the decoding result.
|
||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lattice-score-scale",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The scale to be applied to `lattice.scores`."
|
||||
"It's needed if you use any kinds of n-best based rescoring. "
|
||||
"Currently, it is used when the decoding method is: nbest, "
|
||||
"nbest-rescoring, attention-decoder, and nbest-oracle. "
|
||||
"A smaller value results in more unique paths.",
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
@ -104,21 +139,6 @@ def get_params() -> AttributeDict:
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
# Possible values for method:
|
||||
# - 1best
|
||||
# - nbest
|
||||
# - nbest-rescoring
|
||||
# - whole-lattice-rescoring
|
||||
# - attention-decoder
|
||||
# - nbest-oracle
|
||||
# "method": "nbest",
|
||||
# "method": "nbest-rescoring",
|
||||
# "method": "whole-lattice-rescoring",
|
||||
"method": "attention-decoder",
|
||||
# "method": "nbest-oracle",
|
||||
# num_paths is used when method is "nbest", "nbest-rescoring",
|
||||
# attention-decoder, and nbest-oracle
|
||||
"num_paths": 100,
|
||||
}
|
||||
)
|
||||
return params
|
||||
@ -129,7 +149,7 @@ def decode_one_batch(
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
@ -163,8 +183,8 @@ def decode_one_batch(
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
sos_id:
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
@ -217,7 +237,7 @@ def decode_one_batch(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
lexicon=lexicon,
|
||||
word_table=word_table,
|
||||
scale=params.lattice_score_scale,
|
||||
)
|
||||
|
||||
@ -237,7 +257,7 @@ def decode_one_batch(
|
||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in [
|
||||
@ -283,7 +303,7 @@ def decode_one_batch(
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
@ -293,7 +313,7 @@ def decode_dataset(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
@ -309,8 +329,8 @@ def decode_dataset(
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
@ -344,7 +364,7 @@ def decode_dataset(
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
@ -540,7 +560,7 @@ def main():
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
|
@ -74,6 +74,23 @@ def get_parser():
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=35,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -103,11 +120,6 @@ def get_params() -> AttributeDict:
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||
and continue training from that checkpoint.
|
||||
|
||||
- num_epochs: Number of epochs to train.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
@ -143,8 +155,6 @@ def get_params() -> AttributeDict:
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 1e-6,
|
||||
"subsampling_factor": 4,
|
||||
"start_epoch": 0,
|
||||
"num_epochs": 20,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
|
@ -75,6 +75,23 @@ def get_parser():
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -104,11 +121,6 @@ def get_params() -> AttributeDict:
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||
and continue training from that checkpoint.
|
||||
|
||||
- num_epochs: Number of epochs to train.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
@ -127,6 +139,8 @@ def get_params() -> AttributeDict:
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
@ -143,14 +157,13 @@ def get_params() -> AttributeDict:
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 5e-4,
|
||||
"subsampling_factor": 3,
|
||||
"start_epoch": 0,
|
||||
"num_epochs": 10,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 10,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 1000,
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
@ -398,8 +411,12 @@ def train_one_epoch(
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = 0.0 # sum of losses over all batches
|
||||
tot_frames = 0.0 # sum of frames over all batches
|
||||
tot_loss = 0.0 # reset after params.reset_interval of batches
|
||||
tot_frames = 0.0 # reset after params.reset_interval of batches
|
||||
|
||||
params.tot_loss = 0.0
|
||||
params.tot_frames = 0.0
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
@ -426,6 +443,9 @@ def train_one_epoch(
|
||||
tot_loss += loss_cpu
|
||||
tot_avg_loss = tot_loss / tot_frames
|
||||
|
||||
params.tot_frames += params.train_frames
|
||||
params.tot_loss += loss_cpu
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||
@ -433,6 +453,22 @@ def train_one_epoch(
|
||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/current_loss",
|
||||
loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_loss",
|
||||
tot_avg_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||
tot_loss = 0
|
||||
tot_frames = 0
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
@ -449,7 +485,7 @@ def train_one_epoch(
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
|
||||
params.train_loss = tot_loss / tot_frames
|
||||
params.train_loss = params.tot_loss / params.tot_frames
|
||||
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
|
@ -1,15 +1,14 @@
|
||||
## Yesno recipe
|
||||
|
||||
You can run the recipe with **CPU**.
|
||||
This is the simplest ASR recipe in `icefall`.
|
||||
|
||||
|
||||
[](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
|
||||
|
||||
The above Colab notebook finishes the training using **CPU**
|
||||
within two minutes (50 epochs in total).
|
||||
|
||||
The WER is
|
||||
It can be run on CPU and takes less than 30 seconds to
|
||||
get the following WER:
|
||||
|
||||
```
|
||||
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||
```
|
||||
|
||||
Please refer to
|
||||
<https://icefal1.readthedocs.io/en/latest/recipes/yesno.html>
|
||||
for detailed instructions.
|
||||
|
8
egs/yesno/ASR/tdnn/README.md
Normal file
8
egs/yesno/ASR/tdnn/README.md
Normal file
@ -0,0 +1,8 @@
|
||||
|
||||
## How to run this recipe
|
||||
|
||||
You can find detailed instructions by visiting
|
||||
<https://icefal1.readthedocs.io/en/latest/recipes/yesno.html>
|
||||
|
||||
It describes how to run this recipe and how to use
|
||||
a pre-trained model with `./pretrained.py`.
|
@ -22,8 +22,6 @@ import kaldialign
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def _get_random_paths(
|
||||
lattice: k2.Fsa,
|
||||
@ -623,7 +621,7 @@ def nbest_oracle(
|
||||
lattice: k2.Fsa,
|
||||
num_paths: int,
|
||||
ref_texts: List[str],
|
||||
lexicon: Lexicon,
|
||||
word_table: k2.SymbolTable,
|
||||
scale: float = 1.0,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Select the best hypothesis given a lattice and a reference transcript.
|
||||
@ -644,8 +642,8 @@ def nbest_oracle(
|
||||
ref_texts:
|
||||
A list of reference transcript. Each entry contains space(s)
|
||||
separated words
|
||||
lexicon:
|
||||
It is used to convert word IDs to word symbols.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
scale:
|
||||
It's the scale applied to the lattice.scores. A smaller value
|
||||
yields more unique paths.
|
||||
@ -680,7 +678,7 @@ def nbest_oracle(
|
||||
best_hyp_words = None
|
||||
min_error = float("inf")
|
||||
for hyp_words in hyps:
|
||||
hyp_words = [lexicon.word_table[i] for i in hyp_words]
|
||||
hyp_words = [word_table[i] for i in hyp_words]
|
||||
this_error = kaldialign.edit_distance(ref_words, hyp_words)["total"]
|
||||
if this_error < min_error:
|
||||
min_error = this_error
|
||||
|
Loading…
x
Reference in New Issue
Block a user