mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
WIP: Add documentation. (#22)
* Begin to add documentation. * WIP: Add documentation. * Fix a typo. * Add more doc for the recipe yesno. * Add more doc for the yesno recipe.
This commit is contained in:
parent
57cb611665
commit
01da00dca0
1
docs/.gitignore
vendored
Normal file
1
docs/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
build/
|
20
docs/Makefile
Normal file
20
docs/Makefile
Normal file
@ -0,0 +1,20 @@
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
35
docs/make.bat
Normal file
35
docs/make.bat
Normal file
@ -0,0 +1,35 @@
|
||||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=source
|
||||
set BUILDDIR=build
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.http://sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
1
docs/requirements.txt
Normal file
1
docs/requirements.txt
Normal file
@ -0,0 +1 @@
|
||||
sphinx_rtd_theme
|
BIN
docs/source/_static/logo.png
Normal file
BIN
docs/source/_static/logo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 666 KiB |
77
docs/source/conf.py
Normal file
77
docs/source/conf.py
Normal file
@ -0,0 +1,77 @@
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Path setup --------------------------------------------------------------
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
# import os
|
||||
# import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
import sphinx_rtd_theme
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "icefall"
|
||||
copyright = "2021, icefall development team"
|
||||
author = "icefall development team"
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = "0.1"
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
"sphinx_rtd_theme",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ["_templates"]
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = []
|
||||
|
||||
source_suffix = {
|
||||
".rst": "restructuredtext",
|
||||
}
|
||||
master_doc = "index"
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = "sphinx_rtd_theme"
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
html_show_sourcelink = True
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ["_static", "installation/images"]
|
||||
|
||||
pygments_style = "sphinx"
|
||||
|
||||
numfig = True
|
||||
|
||||
html_context = {
|
||||
"display_github": True,
|
||||
"github_user": "k2-fsa",
|
||||
"github_repo": "icefall",
|
||||
"github_version": "master",
|
||||
"conf_py_path": "/icefall/docs/source/",
|
||||
}
|
24
docs/source/index.rst
Normal file
24
docs/source/index.rst
Normal file
@ -0,0 +1,24 @@
|
||||
.. icefall documentation master file, created by
|
||||
sphinx-quickstart on Mon Aug 23 16:07:39 2021.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
icefall
|
||||
=======
|
||||
|
||||
.. image:: _static/logo.png
|
||||
:alt: icefall logo
|
||||
:width: 168px
|
||||
:align: center
|
||||
:target: https://github.com/k2-fsa/icefall
|
||||
|
||||
|
||||
Documentation for `icefall <https://github.com/k2-fsa/icefall>`_, containing
|
||||
speech recognition recipes using `k2 <https://github.com/k2-fsa/k2>`_.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
|
||||
installation/index
|
||||
recipes/index
|
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="122" height="20" role="img" aria-label="device: CPU | CUDA"><title>device: CPU | CUDA</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="122" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="45" height="20" fill="#555"/><rect x="45" width="77" height="20" fill="#fe7d37"/><rect width="122" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="235" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="350">device</text><text x="235" y="140" transform="scale(.1)" fill="#fff" textLength="350">device</text><text aria-hidden="true" x="825" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="670">CPU | CUDA</text><text x="825" y="140" transform="scale(.1)" fill="#fff" textLength="670">CPU | CUDA</text></g></svg>
|
After Width: | Height: | Size: 1.1 KiB |
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="114" height="20" role="img" aria-label="os: Linux | macOS"><title>os: Linux | macOS</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="114" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="91" height="20" fill="#ff69b4"/><rect width="114" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">os</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">os</text><text aria-hidden="true" x="675" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="810">Linux | macOS</text><text x="675" y="140" transform="scale(.1)" fill="#fff" textLength="810">Linux | macOS</text></g></svg>
|
After Width: | Height: | Size: 1.1 KiB |
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="170" height="20" role="img" aria-label="python: 3.6 | 3.7 | 3.8 | 3.9"><title>python: 3.6 | 3.7 | 3.8 | 3.9</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="170" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="49" height="20" fill="#555"/><rect x="49" width="121" height="20" fill="#007ec6"/><rect width="170" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="255" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="390">python</text><text x="255" y="140" transform="scale(.1)" fill="#fff" textLength="390">python</text><text aria-hidden="true" x="1085" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text><text x="1085" y="140" transform="scale(.1)" fill="#fff" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text></g></svg>
|
After Width: | Height: | Size: 1.2 KiB |
@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="286" height="20" role="img" aria-label="torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0"><title>torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="286" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="39" height="20" fill="#555"/><rect x="39" width="247" height="20" fill="#97ca00"/><rect width="286" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="205" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="290">torch</text><text x="205" y="140" transform="scale(.1)" fill="#fff" textLength="290">torch</text><text aria-hidden="true" x="1615" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text><text x="1615" y="140" transform="scale(.1)" fill="#fff" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text></g></svg>
|
After Width: | Height: | Size: 1.3 KiB |
469
docs/source/installation/index.rst
Normal file
469
docs/source/installation/index.rst
Normal file
@ -0,0 +1,469 @@
|
||||
.. _install icefall:
|
||||
|
||||
Installation
|
||||
============
|
||||
|
||||
- |os|
|
||||
- |device|
|
||||
- |python_versions|
|
||||
- |torch_versions|
|
||||
|
||||
.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg
|
||||
:alt: Supported operating systems
|
||||
|
||||
.. |device| image:: ./images/device-CPU_CUDA-orange.svg
|
||||
:alt: Supported devices
|
||||
|
||||
.. |python_versions| image:: ./images/python-3.6_3.7_3.8_3.9-blue.svg
|
||||
:alt: Supported python versions
|
||||
|
||||
.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
|
||||
:alt: Supported PyTorch versions
|
||||
|
||||
icefall depends on `k2 <https://github.com/k2-fsa/k2>`_ and
|
||||
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
||||
|
||||
We recommend you to install ``k2`` first, as ``k2`` is bound to
|
||||
a specific version of PyTorch after compilation. Install ``k2`` also
|
||||
installs its dependency PyTorch, which can be reused by ``lhotse``.
|
||||
|
||||
|
||||
(1) Install k2
|
||||
--------------
|
||||
|
||||
Please refer to `<https://k2.readthedocs.io/en/latest/installation/index.html>`_
|
||||
to install `k2`.
|
||||
|
||||
.. HINT::
|
||||
|
||||
If you have already installed PyTorch and don't want to replace it,
|
||||
please install a version of k2 that is compiled against the version
|
||||
of PyTorch you are using.
|
||||
|
||||
(2) Install lhotse
|
||||
------------------
|
||||
|
||||
Please refer to `<https://lhotse.readthedocs.io/en/latest/getting-started.html#installation>`_
|
||||
to install ``lhotse``.
|
||||
|
||||
.. HINT::
|
||||
|
||||
Install ``lhotse`` also installs its dependency `torchaudio <https://github.com/pytorch/audio>`_.
|
||||
|
||||
(3) Download icefall
|
||||
--------------------
|
||||
|
||||
icefall is a collection of Python scripts, so you don't need to install it
|
||||
and we don't provide a ``setup.py`` to install it.
|
||||
|
||||
What you need is to download it and set the environment variable ``PYTHONPATH``
|
||||
to point to it.
|
||||
|
||||
Assume you want to place ``icefall`` in the folder ``/tmp``. The
|
||||
following commands show you how to setup ``icefall``:
|
||||
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cd /tmp
|
||||
git clone https://github.com/k2-fsa/icefall
|
||||
cd icefall
|
||||
pip install -r requirements.txt
|
||||
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
|
||||
|
||||
.. HINT::
|
||||
|
||||
You can put several versions of ``icefall`` in the same virtual environment.
|
||||
To switch among different versions of ``icefall``, just set ``PYTHONPATH``
|
||||
to point to the version you want.
|
||||
|
||||
|
||||
Installation example
|
||||
--------------------
|
||||
|
||||
The following shows an example about setting up the environment.
|
||||
|
||||
|
||||
(1) Create a virtual environment
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ virtualenv -p python3.8 test-icefall
|
||||
|
||||
created virtual environment CPython3.8.6.final.0-64 in 1540ms
|
||||
creator CPython3Posix(dest=/ceph-fj/fangjun/test-icefall, clear=False, no_vcs_ignore=False, global=False)
|
||||
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/root/fangjun/.local/share/v
|
||||
irtualenv)
|
||||
added seed packages: pip==21.1.3, setuptools==57.4.0, wheel==0.36.2
|
||||
activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator
|
||||
|
||||
|
||||
(2) Activate your virtual environment
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ source test-icefall/bin/activate
|
||||
|
||||
(3) Install k2
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ pip install k2==1.4.dev20210822+cpu.torch1.9.0 -f https://k2-fsa.org/nightly/index.html
|
||||
|
||||
Looking in links: https://k2-fsa.org/nightly/index.html
|
||||
Collecting k2==1.4.dev20210822+cpu.torch1.9.0
|
||||
Downloading https://k2-fsa.org/nightly/whl/k2-1.4.dev20210822%2Bcpu.torch1.9.0-cp38-cp38-linux_x86_64.whl (1.6 MB)
|
||||
|________________________________| 1.6 MB 185 kB/s
|
||||
Collecting graphviz
|
||||
Downloading graphviz-0.17-py3-none-any.whl (18 kB)
|
||||
Collecting torch==1.9.0
|
||||
Using cached torch-1.9.0-cp38-cp38-manylinux1_x86_64.whl (831.4 MB)
|
||||
Collecting typing-extensions
|
||||
Using cached typing_extensions-3.10.0.0-py3-none-any.whl (26 kB)
|
||||
Installing collected packages: typing-extensions, torch, graphviz, k2
|
||||
Successfully installed graphviz-0.17 k2-1.4.dev20210822+cpu.torch1.9.0 torch-1.9.0 typing-extensions-3.10.0.0
|
||||
|
||||
.. WARNING::
|
||||
|
||||
We choose to install a CPU version of k2 for testing. You would probably want to install
|
||||
a CUDA version of k2.
|
||||
|
||||
|
||||
(4) Install lhotse
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ pip install git+https://github.com/lhotse-speech/lhotse
|
||||
|
||||
Collecting git+https://github.com/lhotse-speech/lhotse
|
||||
Cloning https://github.com/lhotse-speech/lhotse to /tmp/pip-req-build-7b1b76ge
|
||||
Running command git clone -q https://github.com/lhotse-speech/lhotse /tmp/pip-req-build-7b1b76ge
|
||||
Collecting audioread>=2.1.9
|
||||
Using cached audioread-2.1.9-py3-none-any.whl
|
||||
Collecting SoundFile>=0.10
|
||||
Using cached SoundFile-0.10.3.post1-py2.py3-none-any.whl (21 kB)
|
||||
Collecting click>=7.1.1
|
||||
Using cached click-8.0.1-py3-none-any.whl (97 kB)
|
||||
Collecting cytoolz>=0.10.1
|
||||
Using cached cytoolz-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB)
|
||||
Collecting dataclasses
|
||||
Using cached dataclasses-0.6-py3-none-any.whl (14 kB)
|
||||
Collecting h5py>=2.10.0
|
||||
Downloading h5py-3.4.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB)
|
||||
|________________________________| 4.5 MB 684 kB/s
|
||||
Collecting intervaltree>=3.1.0
|
||||
Using cached intervaltree-3.1.0-py2.py3-none-any.whl
|
||||
Collecting lilcom>=1.1.0
|
||||
Using cached lilcom-1.1.1-cp38-cp38-linux_x86_64.whl
|
||||
Collecting numpy>=1.18.1
|
||||
Using cached numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB)
|
||||
Collecting packaging
|
||||
Using cached packaging-21.0-py3-none-any.whl (40 kB)
|
||||
Collecting pyyaml>=5.3.1
|
||||
Using cached PyYAML-5.4.1-cp38-cp38-manylinux1_x86_64.whl (662 kB)
|
||||
Collecting tqdm
|
||||
Downloading tqdm-4.62.1-py2.py3-none-any.whl (76 kB)
|
||||
|________________________________| 76 kB 2.7 MB/s
|
||||
Collecting torchaudio==0.9.0
|
||||
Downloading torchaudio-0.9.0-cp38-cp38-manylinux1_x86_64.whl (1.9 MB)
|
||||
|________________________________| 1.9 MB 73.1 MB/s
|
||||
Requirement already satisfied: torch==1.9.0 in ./test-icefall/lib/python3.8/site-packages (from torchaudio==0.9.0->lhotse===0.8.0.dev
|
||||
-2a1410b-clean) (1.9.0)
|
||||
Requirement already satisfied: typing-extensions in ./test-icefall/lib/python3.8/site-packages (from torch==1.9.0->torchaudio==0.9.0-
|
||||
>lhotse===0.8.0.dev-2a1410b-clean) (3.10.0.0)
|
||||
Collecting toolz>=0.8.0
|
||||
Using cached toolz-0.11.1-py3-none-any.whl (55 kB)
|
||||
Collecting sortedcontainers<3.0,>=2.0
|
||||
Using cached sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)
|
||||
Collecting cffi>=1.0
|
||||
Using cached cffi-1.14.6-cp38-cp38-manylinux1_x86_64.whl (411 kB)
|
||||
Collecting pycparser
|
||||
Using cached pycparser-2.20-py2.py3-none-any.whl (112 kB)
|
||||
Collecting pyparsing>=2.0.2
|
||||
Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
|
||||
Building wheels for collected packages: lhotse
|
||||
Building wheel for lhotse (setup.py) ... done
|
||||
Created wheel for lhotse: filename=lhotse-0.8.0.dev_2a1410b_clean-py3-none-any.whl size=342242 sha256=f683444afa4dc0881133206b4646a
|
||||
9d0f774224cc84000f55d0a67f6e4a37997
|
||||
Stored in directory: /tmp/pip-ephem-wheel-cache-ftu0qysz/wheels/7f/7a/8e/a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f
|
||||
WARNING: Built wheel for lhotse is invalid: Metadata 1.2 mandates PEP 440 version, but '0.8.0.dev-2a1410b-clean' is not
|
||||
Failed to build lhotse
|
||||
Installing collected packages: pycparser, toolz, sortedcontainers, pyparsing, numpy, cffi, tqdm, torchaudio, SoundFile, pyyaml, packa
|
||||
ging, lilcom, intervaltree, h5py, dataclasses, cytoolz, click, audioread, lhotse
|
||||
Running setup.py install for lhotse ... done
|
||||
DEPRECATION: lhotse was installed using the legacy 'setup.py install' method, because a wheel could not be built for it. A possible
|
||||
replacement is to fix the wheel build issue reported above. You can find discussion regarding this at https://github.com/pypa/pip/is
|
||||
sues/8368.
|
||||
Successfully installed SoundFile-0.10.3.post1 audioread-2.1.9 cffi-1.14.6 click-8.0.1 cytoolz-0.11.0 dataclasses-0.6 h5py-3.4.0 inter
|
||||
valtree-3.1.0 lhotse-0.8.0.dev-2a1410b-clean lilcom-1.1.1 numpy-1.21.2 packaging-21.0 pycparser-2.20 pyparsing-2.4.7 pyyaml-5.4.1 sor
|
||||
tedcontainers-2.4.0 toolz-0.11.1 torchaudio-0.9.0 tqdm-4.62.1
|
||||
|
||||
**NOTE**: After installing ``lhotse``, you will encounter the following error:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ lhotse download --help
|
||||
-bash: /ceph-fj/fangjun/test-icefall/bin/lhotse: python: bad interpreter: No such file or directory
|
||||
|
||||
The correct fix is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
echo '#!/usr/bin/env python3' | cat - $(which lhotse) > /tmp/lhotse-bin
|
||||
chmod +x /tmp/lhotse-bin
|
||||
mv /tmp/lhotse-bin $(which lhotse)
|
||||
|
||||
|
||||
(5) Download icefall
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd /tmp
|
||||
$ git clone https://github.com/k2-fsa/icefall
|
||||
|
||||
Cloning into 'icefall'...
|
||||
remote: Enumerating objects: 500, done.
|
||||
remote: Counting objects: 100% (500/500), done.
|
||||
remote: Compressing objects: 100% (308/308), done.
|
||||
remote: Total 500 (delta 263), reused 307 (delta 102), pack-reused 0
|
||||
Receiving objects: 100% (500/500), 172.49 KiB | 385.00 KiB/s, done.
|
||||
Resolving deltas: 100% (263/263), done.
|
||||
|
||||
$ cd icefall
|
||||
$ pip install -r requirements.txt
|
||||
|
||||
Collecting kaldilm
|
||||
Downloading kaldilm-1.8.tar.gz (48 kB)
|
||||
|________________________________| 48 kB 574 kB/s
|
||||
Collecting kaldialign
|
||||
Using cached kaldialign-0.2-cp38-cp38-linux_x86_64.whl
|
||||
Collecting sentencepiece>=0.1.96
|
||||
Using cached sentencepiece-0.1.96-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)
|
||||
Collecting tensorboard
|
||||
Using cached tensorboard-2.6.0-py3-none-any.whl (5.6 MB)
|
||||
Requirement already satisfied: setuptools>=41.0.0 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r
|
||||
requirements.txt (line 4)) (57.4.0)
|
||||
Collecting absl-py>=0.4
|
||||
Using cached absl_py-0.13.0-py3-none-any.whl (132 kB)
|
||||
Collecting google-auth-oauthlib<0.5,>=0.4.1
|
||||
Using cached google_auth_oauthlib-0.4.5-py2.py3-none-any.whl (18 kB)
|
||||
Collecting grpcio>=1.24.3
|
||||
Using cached grpcio-1.39.0-cp38-cp38-manylinux2014_x86_64.whl (4.3 MB)
|
||||
Requirement already satisfied: wheel>=0.26 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r require
|
||||
ments.txt (line 4)) (0.36.2)
|
||||
Requirement already satisfied: numpy>=1.12.0 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r requi
|
||||
rements.txt (line 4)) (1.21.2)
|
||||
Collecting protobuf>=3.6.0
|
||||
Using cached protobuf-3.17.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)
|
||||
Collecting werkzeug>=0.11.15
|
||||
Using cached Werkzeug-2.0.1-py3-none-any.whl (288 kB)
|
||||
Collecting tensorboard-data-server<0.7.0,>=0.6.0
|
||||
Using cached tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)
|
||||
Collecting google-auth<2,>=1.6.3
|
||||
Downloading google_auth-1.35.0-py2.py3-none-any.whl (152 kB)
|
||||
|________________________________| 152 kB 1.4 MB/s
|
||||
Collecting requests<3,>=2.21.0
|
||||
Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)
|
||||
Collecting tensorboard-plugin-wit>=1.6.0
|
||||
Using cached tensorboard_plugin_wit-1.8.0-py3-none-any.whl (781 kB)
|
||||
Collecting markdown>=2.6.8
|
||||
Using cached Markdown-3.3.4-py3-none-any.whl (97 kB)
|
||||
Collecting six
|
||||
Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
|
||||
Collecting cachetools<5.0,>=2.0.0
|
||||
Using cached cachetools-4.2.2-py3-none-any.whl (11 kB)
|
||||
Collecting rsa<5,>=3.1.4
|
||||
Using cached rsa-4.7.2-py3-none-any.whl (34 kB)
|
||||
Collecting pyasn1-modules>=0.2.1
|
||||
Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)
|
||||
Collecting requests-oauthlib>=0.7.0
|
||||
Using cached requests_oauthlib-1.3.0-py2.py3-none-any.whl (23 kB)
|
||||
Collecting pyasn1<0.5.0,>=0.4.6
|
||||
Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)
|
||||
Collecting urllib3<1.27,>=1.21.1
|
||||
Using cached urllib3-1.26.6-py2.py3-none-any.whl (138 kB)
|
||||
Collecting certifi>=2017.4.17
|
||||
Using cached certifi-2021.5.30-py2.py3-none-any.whl (145 kB)
|
||||
Collecting charset-normalizer~=2.0.0
|
||||
Using cached charset_normalizer-2.0.4-py3-none-any.whl (36 kB)
|
||||
Collecting idna<4,>=2.5
|
||||
Using cached idna-3.2-py3-none-any.whl (59 kB)
|
||||
Collecting oauthlib>=3.0.0
|
||||
Using cached oauthlib-3.1.1-py2.py3-none-any.whl (146 kB)
|
||||
Building wheels for collected packages: kaldilm
|
||||
Building wheel for kaldilm (setup.py) ... done
|
||||
Created wheel for kaldilm: filename=kaldilm-1.8-cp38-cp38-linux_x86_64.whl size=897233 sha256=eccb906cafcd45bf9a7e1a1718e4534254bfb
|
||||
f4c0d0cbc66eee6c88d68a63862
|
||||
Stored in directory: /root/fangjun/.cache/pip/wheels/85/7d/63/f2dd586369b8797cb36d213bf3a84a789eeb92db93d2e723c9
|
||||
Successfully built kaldilm
|
||||
Installing collected packages: urllib3, pyasn1, idna, charset-normalizer, certifi, six, rsa, requests, pyasn1-modules, oauthlib, cach
|
||||
etools, requests-oauthlib, google-auth, werkzeug, tensorboard-plugin-wit, tensorboard-data-server, protobuf, markdown, grpcio, google
|
||||
-auth-oauthlib, absl-py, tensorboard, sentencepiece, kaldilm, kaldialign
|
||||
Successfully installed absl-py-0.13.0 cachetools-4.2.2 certifi-2021.5.30 charset-normalizer-2.0.4 google-auth-1.35.0 google-auth-oaut
|
||||
hlib-0.4.5 grpcio-1.39.0 idna-3.2 kaldialign-0.2 kaldilm-1.8 markdown-3.3.4 oauthlib-3.1.1 protobuf-3.17.3 pyasn1-0.4.8 pyasn1-module
|
||||
s-0.2.8 requests-2.26.0 requests-oauthlib-1.3.0 rsa-4.7.2 sentencepiece-0.1.96 six-1.16.0 tensorboard-2.6.0 tensorboard-data-server-0
|
||||
.6.1 tensorboard-plugin-wit-1.8.0 urllib3-1.26.6 werkzeug-2.0.1
|
||||
|
||||
|
||||
Test Your Installation
|
||||
----------------------
|
||||
|
||||
To test that your installation is successful, let us run
|
||||
the `yesno recipe <https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR>`_
|
||||
on CPU.
|
||||
|
||||
Data preparation
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ export PYTHONPATH=/tmp/icefall:$PYTHONPATH
|
||||
$ cd /tmp/icefall
|
||||
$ cd egs/yesno/AS
|
||||
$ ./prepare.sh
|
||||
|
||||
The log of running ``./prepare.sh`` is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-23 19:27:26 (prepare.sh:24:main) dl_dir: /tmp/icefall/egs/yesno/ASR/download
|
||||
2021-08-23 19:27:26 (prepare.sh:27:main) stage 0: Download data
|
||||
Downloading waves_yesno.tar.gz: 4.49MB [00:03, 1.39MB/s]
|
||||
2021-08-23 19:27:30 (prepare.sh:36:main) Stage 1: Prepare yesno manifest
|
||||
2021-08-23 19:27:31 (prepare.sh:42:main) Stage 2: Compute fbank for yesno
|
||||
2021-08-23 19:27:32,803 INFO [compute_fbank_yesno.py:52] Processing train
|
||||
Extracting and storing features: 100%|_______________________________________________________________| 90/90 [00:01<00:00, 80.57it/s]
|
||||
2021-08-23 19:27:34,085 INFO [compute_fbank_yesno.py:52] Processing test
|
||||
Extracting and storing features: 100%|______________________________________________________________| 30/30 [00:00<00:00, 248.21it/s]
|
||||
2021-08-23 19:27:34 (prepare.sh:48:main) Stage 3: Prepare lang
|
||||
2021-08-23 19:27:35 (prepare.sh:63:main) Stage 4: Prepare G
|
||||
/tmp/pip-install-fcordre9/kaldilm_6899d26f2d684ad48f21025950cd2866/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Rea
|
||||
d(std::istream&):79
|
||||
[I] Reading \data\ section.
|
||||
/tmp/pip-install-fcordre9/kaldilm_6899d26f2d684ad48f21025950cd2866/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Rea
|
||||
d(std::istream&):140
|
||||
[I] Reading \1-grams: section.
|
||||
2021-08-23 19:27:35 (prepare.sh:89:main) Stage 5: Compile HLG
|
||||
2021-08-23 19:27:35,928 INFO [compile_hlg.py:120] Processing data/lang_phone
|
||||
2021-08-23 19:27:35,929 INFO [lexicon.py:116] Converting L.pt to Linv.pt
|
||||
2021-08-23 19:27:35,931 INFO [compile_hlg.py:48] Building ctc_topo. max_token_id: 3
|
||||
2021-08-23 19:27:35,932 INFO [compile_hlg.py:52] Loading G.fst.txt
|
||||
2021-08-23 19:27:35,932 INFO [compile_hlg.py:62] Intersecting L and G
|
||||
2021-08-23 19:27:35,933 INFO [compile_hlg.py:64] LG shape: (4, None)
|
||||
2021-08-23 19:27:35,933 INFO [compile_hlg.py:66] Connecting LG
|
||||
2021-08-23 19:27:35,933 INFO [compile_hlg.py:68] LG shape after k2.connect: (4, None)
|
||||
2021-08-23 19:27:35,933 INFO [compile_hlg.py:70] <class 'torch.Tensor'>
|
||||
2021-08-23 19:27:35,933 INFO [compile_hlg.py:71] Determinizing LG
|
||||
2021-08-23 19:27:35,934 INFO [compile_hlg.py:74] <class '_k2.RaggedInt'>
|
||||
2021-08-23 19:27:35,934 INFO [compile_hlg.py:76] Connecting LG after k2.determinize
|
||||
2021-08-23 19:27:35,934 INFO [compile_hlg.py:79] Removing disambiguation symbols on LG
|
||||
2021-08-23 19:27:35,934 INFO [compile_hlg.py:87] LG shape after k2.remove_epsilon: (6, None)
|
||||
2021-08-23 19:27:35,935 INFO [compile_hlg.py:92] Arc sorting LG
|
||||
2021-08-23 19:27:35,935 INFO [compile_hlg.py:95] Composing H and LG
|
||||
2021-08-23 19:27:35,935 INFO [compile_hlg.py:102] Connecting LG
|
||||
2021-08-23 19:27:35,935 INFO [compile_hlg.py:105] Arc sorting LG
|
||||
2021-08-23 19:27:35,936 INFO [compile_hlg.py:107] HLG.shape: (8, None)
|
||||
2021-08-23 19:27:35,936 INFO [compile_hlg.py:123] Saving HLG.pt to data/lang_phone
|
||||
|
||||
|
||||
Training
|
||||
~~~~~~~~
|
||||
|
||||
Now let us run the training part:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ export CUDA_VISIBLE_DEVICES=""
|
||||
$ ./tdnn/train.py
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
We use ``export CUDA_VISIBLE_DEVICES=""`` so that icefall uses CPU
|
||||
even if there are GPUs available.
|
||||
|
||||
The training log is given below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-23 19:30:31,072 INFO [train.py:465] Training started
|
||||
2021-08-23 19:30:31,072 INFO [train.py:466] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01,
|
||||
'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, '
|
||||
best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_doub
|
||||
le_scores': True, 'world_size': 1, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 15, 'feature_dir': PosixPath('data/fbank'
|
||||
), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0
|
||||
, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2}
|
||||
2021-08-23 19:30:31,074 INFO [lexicon.py:113] Loading pre-compiled data/lang_phone/Linv.pt
|
||||
2021-08-23 19:30:31,098 INFO [asr_datamodule.py:146] About to get train cuts
|
||||
2021-08-23 19:30:31,098 INFO [asr_datamodule.py:240] About to get train cuts
|
||||
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:149] About to create train dataset
|
||||
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:200] Using SingleCutSampler.
|
||||
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:206] About to create train dataloader
|
||||
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:219] About to get test cuts
|
||||
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:246] About to get test cuts
|
||||
2021-08-23 19:30:31,357 INFO [train.py:416] Epoch 0, batch 0, batch avg loss 1.0789, total avg loss: 1.0789, batch size: 4
|
||||
2021-08-23 19:30:31,848 INFO [train.py:416] Epoch 0, batch 10, batch avg loss 0.5356, total avg loss: 0.7556, batch size: 4
|
||||
2021-08-23 19:30:32,301 INFO [train.py:432] Epoch 0, valid loss 0.9972, best valid loss: 0.9972 best valid epoch: 0
|
||||
2021-08-23 19:30:32,805 INFO [train.py:416] Epoch 0, batch 20, batch avg loss 0.2436, total avg loss: 0.5717, batch size: 3
|
||||
2021-08-23 19:30:33,109 INFO [train.py:432] Epoch 0, valid loss 0.4167, best valid loss: 0.4167 best valid epoch: 0
|
||||
2021-08-23 19:30:33,121 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-0.pt
|
||||
2021-08-23 19:30:33,325 INFO [train.py:416] Epoch 1, batch 0, batch avg loss 0.2214, total avg loss: 0.2214, batch size: 5
|
||||
2021-08-23 19:30:33,798 INFO [train.py:416] Epoch 1, batch 10, batch avg loss 0.0781, total avg loss: 0.1343, batch size: 5
|
||||
2021-08-23 19:30:34,065 INFO [train.py:432] Epoch 1, valid loss 0.0859, best valid loss: 0.0859 best valid epoch: 1
|
||||
2021-08-23 19:30:34,556 INFO [train.py:416] Epoch 1, batch 20, batch avg loss 0.0421, total avg loss: 0.0975, batch size: 3
|
||||
2021-08-23 19:30:34,810 INFO [train.py:432] Epoch 1, valid loss 0.0431, best valid loss: 0.0431 best valid epoch: 1
|
||||
2021-08-23 19:30:34,824 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-1.pt
|
||||
|
||||
... ...
|
||||
|
||||
2021-08-23 19:30:49,657 INFO [train.py:416] Epoch 13, batch 0, batch avg loss 0.0109, total avg loss: 0.0109, batch size: 5
|
||||
2021-08-23 19:30:49,984 INFO [train.py:416] Epoch 13, batch 10, batch avg loss 0.0093, total avg loss: 0.0096, batch size: 4
|
||||
2021-08-23 19:30:50,239 INFO [train.py:432] Epoch 13, valid loss 0.0104, best valid loss: 0.0101 best valid epoch: 12
|
||||
2021-08-23 19:30:50,569 INFO [train.py:416] Epoch 13, batch 20, batch avg loss 0.0092, total avg loss: 0.0096, batch size: 2
|
||||
2021-08-23 19:30:50,819 INFO [train.py:432] Epoch 13, valid loss 0.0101, best valid loss: 0.0101 best valid epoch: 13
|
||||
2021-08-23 19:30:50,835 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-13.pt
|
||||
2021-08-23 19:30:51,024 INFO [train.py:416] Epoch 14, batch 0, batch avg loss 0.0105, total avg loss: 0.0105, batch size: 5
|
||||
2021-08-23 19:30:51,317 INFO [train.py:416] Epoch 14, batch 10, batch avg loss 0.0099, total avg loss: 0.0097, batch size: 4
|
||||
2021-08-23 19:30:51,552 INFO [train.py:432] Epoch 14, valid loss 0.0108, best valid loss: 0.0101 best valid epoch: 13
|
||||
2021-08-23 19:30:51,869 INFO [train.py:416] Epoch 14, batch 20, batch avg loss 0.0096, total avg loss: 0.0097, batch size: 5
|
||||
2021-08-23 19:30:52,107 INFO [train.py:432] Epoch 14, valid loss 0.0102, best valid loss: 0.0101 best valid epoch: 13
|
||||
2021-08-23 19:30:52,126 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-14.pt
|
||||
2021-08-23 19:30:52,128 INFO [train.py:537] Done!
|
||||
|
||||
Decoding
|
||||
~~~~~~~~
|
||||
|
||||
Let us use the trained model to decode the test set:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ ./tdnn/decode.py
|
||||
|
||||
The decoding log is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-23 19:35:30,192 INFO [decode.py:249] Decoding started
|
||||
2021-08-23 19:35:30,192 INFO [decode.py:250] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lm_dir': PosixPath('data/lm'), 'feature_dim': 23, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2}
|
||||
2021-08-23 19:35:30,193 INFO [lexicon.py:113] Loading pre-compiled data/lang_phone/Linv.pt
|
||||
2021-08-23 19:35:30,213 INFO [decode.py:259] device: cpu
|
||||
2021-08-23 19:35:30,217 INFO [decode.py:279] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
|
||||
/tmp/icefall/icefall/checkpoint.py:146: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch.
|
||||
It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
|
||||
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:450.)
|
||||
avg[k] //= n
|
||||
2021-08-23 19:35:30,220 INFO [asr_datamodule.py:219] About to get test cuts
|
||||
2021-08-23 19:35:30,220 INFO [asr_datamodule.py:246] About to get test cuts
|
||||
2021-08-23 19:35:30,409 INFO [decode.py:190] batch 0/8, cuts processed until now is 4
|
||||
2021-08-23 19:35:30,571 INFO [decode.py:228] The transcripts are stored in tdnn/exp/recogs-test_set.txt
|
||||
2021-08-23 19:35:30,572 INFO [utils.py:317] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||
2021-08-23 19:35:30,573 INFO [decode.py:236] Wrote detailed error stats to tdnn/exp/errs-test_set.txt
|
||||
2021-08-23 19:35:30,573 INFO [decode.py:299] Done!
|
||||
|
||||
**Congratulations!** You have successfully setup the environment and have run the first recipe in ``icefall``.
|
||||
|
||||
Have fun with ``icefall``!
|
BIN
docs/source/recipes/images/yesno-tdnn-tensorboard-log.png
Normal file
BIN
docs/source/recipes/images/yesno-tdnn-tensorboard-log.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 121 KiB |
18
docs/source/recipes/index.rst
Normal file
18
docs/source/recipes/index.rst
Normal file
@ -0,0 +1,18 @@
|
||||
Recipes
|
||||
=======
|
||||
|
||||
This page contains various recipes in ``icefall``.
|
||||
Currently, only speech recognition recipes are provided.
|
||||
|
||||
We may add recipes for other tasks as well in the future.
|
||||
|
||||
.. we put the yesno recipe as the first recipe since it is the simplest one.
|
||||
.. Other recipes are listed in a alphabetical order.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
yesno
|
||||
|
||||
librispeech
|
||||
|
2
docs/source/recipes/librispeech.rst
Normal file
2
docs/source/recipes/librispeech.rst
Normal file
@ -0,0 +1,2 @@
|
||||
LibriSpeech
|
||||
===========
|
445
docs/source/recipes/yesno.rst
Normal file
445
docs/source/recipes/yesno.rst
Normal file
@ -0,0 +1,445 @@
|
||||
yesno
|
||||
=====
|
||||
|
||||
This page shows you how to run the ``yesno`` recipe. It contains:
|
||||
|
||||
- (1) Prepare data for training
|
||||
- (2) Train a TDNN model
|
||||
|
||||
- (a) View text format logs and visualize TensorBoard logs
|
||||
- (b) Select device type, i.e., CPU and GPU, for training
|
||||
- (c) Change training options
|
||||
- (d) Resume training from a checkpoint
|
||||
|
||||
- (3) Decode with a trained model
|
||||
|
||||
- (a) Select a checkpoint for decoding
|
||||
- (b) Model averaging
|
||||
|
||||
- (4) Colab notebook
|
||||
|
||||
- (a) It shows you step by step how to setup the environment, how to do training,
|
||||
and how to do decoding
|
||||
- (b) How to use a pre-trained model
|
||||
|
||||
- (5) Inference with a pre-trained model
|
||||
|
||||
- (a) Download a pre-trained model, provided by us
|
||||
- (b) Decode a single sound file with a pre-trained model
|
||||
- (c) Decode multiple sound files at the same time
|
||||
|
||||
It does **NOT** show you:
|
||||
|
||||
- (1) How to train with multiple GPUs
|
||||
|
||||
The ``yesno`` dataset is so small that CPU is more than enough
|
||||
for training as well as for decoding.
|
||||
|
||||
- (2) How to use LM rescoring for decoding
|
||||
|
||||
The dataset does not have an LM for rescoring.
|
||||
|
||||
.. HINT::
|
||||
|
||||
We assume you have read the page :ref:`install icefall` and have setup
|
||||
the environment for ``icefall``.
|
||||
|
||||
.. HINT::
|
||||
|
||||
You **don't** need a **GPU** to run this recipe. It can be run on a **CPU**.
|
||||
The training part takes less than 30 **seconds** on a CPU and you will get
|
||||
the following WER at the end::
|
||||
|
||||
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||
|
||||
Data preparation
|
||||
----------------
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ ./prepare.sh
|
||||
|
||||
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||
All you need to do is to run it.
|
||||
|
||||
The data preparation contains several stages, you can use the following two
|
||||
options:
|
||||
|
||||
- ``--stage``
|
||||
- ``--stop-stage``
|
||||
|
||||
to control which stage(s) should be run. By default, all stages are executed.
|
||||
|
||||
|
||||
For example,
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||
|
||||
means to run only stage 0.
|
||||
|
||||
To run stage 2 to stage 5, use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||
|
||||
|
||||
Training
|
||||
--------
|
||||
|
||||
We provide only a TDNN model, contained in
|
||||
the `tdnn <https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR/tdnn>`_
|
||||
folder, for ``yesno``.
|
||||
|
||||
The command to run the training part is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ export CUDA_VISIBLE_DEVICES=""
|
||||
$ ./tdnn/train.py
|
||||
|
||||
By default, it will run ``15`` epochs. Training logs and checkpoints are saved
|
||||
in ``tdnn/exp``.
|
||||
|
||||
In ``tdnn/exp``, you will find the following files:
|
||||
|
||||
- ``epoch-0.pt``, ``epoch-1.pt``, ...
|
||||
|
||||
These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
|
||||
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn/train.py --start-epoch 11
|
||||
|
||||
- ``tensorboard/``
|
||||
|
||||
This folder contains TensorBoard logs. Training loss, validation loss, learning
|
||||
rate, etc, are recorded in these logs. You can visualize them by:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd tdnn/exp/tensorboard
|
||||
$ tensorboard dev upload --logdir . --description "TDNN training for yesno with icefall"
|
||||
|
||||
It will print something like below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
TensorFlow installation not found - running with reduced feature set.
|
||||
Upload started and will continue reading any new data as it's added to the logdir.
|
||||
|
||||
To stop uploading, press Ctrl-C.
|
||||
|
||||
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/yKUbhb5wRmOSXYkId1z9eg/
|
||||
|
||||
[2021-08-23T23:49:41] Started scanning logdir.
|
||||
[2021-08-23T23:49:42] Total uploaded: 135 scalars, 0 tensors, 0 binary objects
|
||||
Listening for new data in logdir...
|
||||
|
||||
Note there is a URL in the above output, click it and you will see
|
||||
the following screenshot:
|
||||
|
||||
.. figure:: images/yesno-tdnn-tensorboard-log.png
|
||||
:width: 600
|
||||
:alt: TensorBoard screenshot
|
||||
:align: center
|
||||
:target: https://tensorboard.dev/experiment/yKUbhb5wRmOSXYkId1z9eg/
|
||||
|
||||
TensorBoard screenshot.
|
||||
|
||||
- ``log/log-train-xxxx``
|
||||
|
||||
It is the detailed training log in text format, same as the one
|
||||
you saw printed to the console during training.
|
||||
|
||||
|
||||
|
||||
.. NOTE::
|
||||
|
||||
By default, ``./tdnn/train.py`` uses GPU 0 for training if GPUs are available.
|
||||
If you have two GPUs, say, GPU 0 and GPU 1, and you want to use GPU 1 for
|
||||
training, you can run:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ export CUDA_VISIBLE_DEVICES="1"
|
||||
$ ./tdnn/train.py
|
||||
|
||||
Since the ``yesno`` dataset is very small, containing only 30 sound files
|
||||
for training, and the model in use is also very small, we use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ export CUDA_VISIBLE_DEVICES=""
|
||||
|
||||
so that ``./tdnn/train.py`` uses CPU during training.
|
||||
|
||||
If you don't have GPUs, then you don't need to
|
||||
run ``export CUDA_VISIBLE_DEVICES=""``.
|
||||
|
||||
To see available training options, you can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn/train.py --help
|
||||
|
||||
Other training options, e.g., learning rate, results dir, etc., are
|
||||
pre-configured in the function ``get_params()``
|
||||
in `tdnn/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/tdnn/train.py>`_.
|
||||
Normally, you don't need to change them. You can change them by modifying the code, if
|
||||
you want.
|
||||
|
||||
Decoding
|
||||
--------
|
||||
|
||||
The decoding part uses checkpoints saved by the training part, so you have
|
||||
to run the training part first.
|
||||
|
||||
The command for decoding is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ export CUDA_VISIBLE_DEVICES=""
|
||||
$ ./tdnn/decode.py
|
||||
|
||||
You will see the WER in the output log.
|
||||
|
||||
Decoded results are saved in ``tdnn/exp``.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn/decode.py --help
|
||||
|
||||
shows you the available decoding options.
|
||||
|
||||
Some commonly used options are:
|
||||
|
||||
- ``--epoch``
|
||||
|
||||
You can select which checkpoint to be used for decoding.
|
||||
For instance, ``./tdnn/decode.py --epoch 10`` means to use
|
||||
``./tdnn/exp/epoch-10.pt`` for decoding.
|
||||
|
||||
- ``--avg``
|
||||
|
||||
It's related to model averaging. It specifies number of checkpoints
|
||||
to be averaged. The averaged model is used for decoding.
|
||||
For example, the following command:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./tdnn/decode.py --epoch 10 --avg 3
|
||||
|
||||
uses the average of ``epoch-8.pt``, ``epoch-9.pt`` and ``epoch-10.pt``
|
||||
for decoding.
|
||||
|
||||
- ``--export``
|
||||
|
||||
If it is ``True``, i.e., ``./tdnn/decode.py --export 1``, the code
|
||||
will save the averaged model to ``tdnn/exp/pretrained.pt``.
|
||||
See :ref:`yesno use a pre-trained model` for how to use it.
|
||||
|
||||
|
||||
.. _yesno use a pre-trained model:
|
||||
|
||||
Pre-trained Model
|
||||
-----------------
|
||||
|
||||
We have uploaded the pre-trained model to
|
||||
`<https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn>`_.
|
||||
|
||||
The following shows you how to use the pre-trained model.
|
||||
|
||||
Download the pre-trained model
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ mkdir tmp
|
||||
$ cd tmp
|
||||
$ git lfs install
|
||||
$ git clone https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
You have to use ``git lfs`` to download the pre-trained model.
|
||||
|
||||
After downloading, you will have the following files:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ tree tmp
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
tmp/
|
||||
`-- icefall_asr_yesno_tdnn
|
||||
|-- README.md
|
||||
|-- lang_phone
|
||||
| |-- HLG.pt
|
||||
| |-- L.pt
|
||||
| |-- L_disambig.pt
|
||||
| |-- Linv.pt
|
||||
| |-- lexicon.txt
|
||||
| |-- lexicon_disambig.txt
|
||||
| |-- tokens.txt
|
||||
| `-- words.txt
|
||||
|-- lm
|
||||
| |-- G.arpa
|
||||
| `-- G.fst.txt
|
||||
|-- pretrained.pt
|
||||
`-- test_waves
|
||||
|-- 0_0_0_1_0_0_0_1.wav
|
||||
|-- 0_0_1_0_0_0_1_0.wav
|
||||
|-- 0_0_1_0_0_1_1_1.wav
|
||||
|-- 0_0_1_0_1_0_0_1.wav
|
||||
|-- 0_0_1_1_0_0_0_1.wav
|
||||
|-- 0_0_1_1_0_1_1_0.wav
|
||||
|-- 0_0_1_1_1_0_0_0.wav
|
||||
|-- 0_0_1_1_1_1_0_0.wav
|
||||
|-- 0_1_0_0_0_1_0_0.wav
|
||||
|-- 0_1_0_0_1_0_1_0.wav
|
||||
|-- 0_1_0_1_0_0_0_0.wav
|
||||
|-- 0_1_0_1_1_1_0_0.wav
|
||||
|-- 0_1_1_0_0_1_1_1.wav
|
||||
|-- 0_1_1_1_0_0_1_0.wav
|
||||
|-- 0_1_1_1_1_0_1_0.wav
|
||||
|-- 1_0_0_0_0_0_0_0.wav
|
||||
|-- 1_0_0_0_0_0_1_1.wav
|
||||
|-- 1_0_0_1_0_1_1_1.wav
|
||||
|-- 1_0_1_1_0_1_1_1.wav
|
||||
|-- 1_0_1_1_1_1_0_1.wav
|
||||
|-- 1_1_0_0_0_1_1_1.wav
|
||||
|-- 1_1_0_0_1_0_1_1.wav
|
||||
|-- 1_1_0_1_0_1_0_0.wav
|
||||
|-- 1_1_0_1_1_0_0_1.wav
|
||||
|-- 1_1_0_1_1_1_1_0.wav
|
||||
|-- 1_1_1_0_0_1_0_1.wav
|
||||
|-- 1_1_1_0_1_0_1_0.wav
|
||||
|-- 1_1_1_1_0_0_1_0.wav
|
||||
|-- 1_1_1_1_1_0_0_0.wav
|
||||
`-- 1_1_1_1_1_1_1_1.wav
|
||||
|
||||
4 directories, 42 files
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ soxi tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav
|
||||
|
||||
Input File : 'tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav'
|
||||
Channels : 1
|
||||
Sample Rate : 8000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:06.76 = 54080 samples ~ 507 CDDA sectors
|
||||
File Size : 108k
|
||||
Bit Rate : 128k
|
||||
Sample Encoding: 16-bit Signed Integer PCM
|
||||
|
||||
- ``0_0_1_0_1_0_0_1.wav``
|
||||
|
||||
0 means No; 1 means Yes. No and Yes are not in English,
|
||||
but in `Hebrew <https://en.wikipedia.org/wiki/Hebrew_language>`_.
|
||||
So this file contains ``NO NO YES NO YES NO NO YES``.
|
||||
|
||||
Download kaldifeat
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used for extracting
|
||||
features from a single or multiple sound files. Please refer to
|
||||
`<https://github.com/csukuangfj/kaldifeat>`_ to install ``kaldifeat`` first.
|
||||
|
||||
Inference with a pre-trained model
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/yesno/ASR
|
||||
$ ./tdnn/pretrained.py --help
|
||||
|
||||
shows the usage information of ``./tdnn/pretrained.py``.
|
||||
|
||||
To decode a single file, we can use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./tdnn/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \
|
||||
--words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \
|
||||
--HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \
|
||||
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav
|
||||
|
||||
The output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-24 12:22:51,621 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']}
|
||||
2021-08-24 12:22:51,645 INFO [pretrained.py:125] device: cpu
|
||||
2021-08-24 12:22:51,645 INFO [pretrained.py:127] Creating model
|
||||
2021-08-24 12:22:51,650 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt
|
||||
2021-08-24 12:22:51,651 INFO [pretrained.py:143] Constructing Fbank computer
|
||||
2021-08-24 12:22:51,652 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']
|
||||
2021-08-24 12:22:51,684 INFO [pretrained.py:159] Decoding started
|
||||
2021-08-24 12:22:51,708 INFO [pretrained.py:198]
|
||||
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav:
|
||||
NO NO YES NO YES NO NO YES
|
||||
|
||||
|
||||
2021-08-24 12:22:51,708 INFO [pretrained.py:200] Decoding Done
|
||||
|
||||
You can see that for the sound file ``0_0_1_0_1_0_0_1.wav``, the decoding result is
|
||||
``NO NO YES NO YES NO NO YES``.
|
||||
|
||||
To decode **multiple** files at the same time, you can use
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./tdnn/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \
|
||||
--words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \
|
||||
--HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \
|
||||
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav \
|
||||
./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav
|
||||
|
||||
The decoding output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-24 12:25:20,159 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav', './tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav']}
|
||||
2021-08-24 12:25:20,181 INFO [pretrained.py:125] device: cpu
|
||||
2021-08-24 12:25:20,181 INFO [pretrained.py:127] Creating model
|
||||
2021-08-24 12:25:20,185 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt
|
||||
2021-08-24 12:25:20,186 INFO [pretrained.py:143] Constructing Fbank computer
|
||||
2021-08-24 12:25:20,187 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav',
|
||||
'./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav']
|
||||
2021-08-24 12:25:20,213 INFO [pretrained.py:159] Decoding started
|
||||
2021-08-24 12:25:20,287 INFO [pretrained.py:198]
|
||||
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav:
|
||||
NO NO YES NO YES NO NO YES
|
||||
|
||||
./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav:
|
||||
YES NO YES YES NO YES YES YES
|
||||
|
||||
2021-08-24 12:25:20,287 INFO [pretrained.py:200] Decoding Done
|
||||
|
||||
You can see again that it decodes correctly.
|
||||
|
||||
Colab notebook
|
||||
--------------
|
||||
|
||||
We do provide a colab notebook for this recipe.
|
||||
|
||||
|yesno colab notebook|
|
||||
|
||||
.. |yesno colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing
|
||||
|
||||
|
||||
**Congratulations!** You have finished the simplest speech recognition recipe in ``icefall``.
|
@ -20,6 +20,7 @@ from icefall.utils import (
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
@ -44,6 +45,17 @@ def get_parser():
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--export",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""When enabled, the averaged model is saved to
|
||||
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -279,6 +291,12 @@ def main():
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
torch.save(
|
||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
|
209
egs/yesno/ASR/tdnn/pretrained.py
Executable file
209
egs/yesno/ASR/tdnn/pretrained.py
Executable file
@ -0,0 +1,209 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torchaudio
|
||||
from model import Tdnn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.decode import get_lattice, one_best_decoding
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 23,
|
||||
"num_classes": 4, # [<blk>, N, SIL, Y]
|
||||
"sample_rate": 8000,
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
|
||||
model = Tdnn(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=params.num_classes,
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
|
||||
# Note: We don't use key padding mask for attention during decoding
|
||||
with torch.no_grad():
|
||||
nnet_output = model(features)
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
supervision_segments = torch.tensor(
|
||||
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
HLG=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
)
|
||||
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -60,6 +60,16 @@ def get_parser():
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
tdnn/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -92,8 +102,6 @@ def get_params() -> AttributeDict:
|
||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||
and continue training from that checkpoint.
|
||||
|
||||
- num_epochs: Number of epochs to train.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
@ -420,6 +428,19 @@ def train_one_epoch(
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/current_loss",
|
||||
loss_cpu / params.train_frames,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/tot_avg_loss",
|
||||
tot_avg_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
compute_validation_loss(
|
||||
params=params,
|
||||
@ -434,6 +455,12 @@ def train_one_epoch(
|
||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||
f"best valid epoch: {params.best_valid_epoch}"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_loss",
|
||||
params.valid_loss,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
params.train_loss = tot_loss / tot_frames
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user