Refactor data preparation for GigaSpeech recipe (#1986)

This commit is contained in:
Yifan Yang 2025-07-10 11:17:37 +08:00 committed by GitHub
parent 9293edc62f
commit 89728dd4f8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 247 additions and 245 deletions

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compile_lg.py

View File

@ -32,13 +32,21 @@ torch.set_num_interop_threads(1)
def compute_fbank_gigaspeech():
in_out_dir = Path("data/fbank")
# number of workers in dataloader
num_workers = 20
# number of seconds in a batch
batch_duration = 1000
subsets = ("L", "M", "S", "XS", "DEV", "TEST")
subsets = (
"DEV",
"TEST",
# "L",
# "M",
# "S",
# "XS",
)
device = torch.device("cpu")
if torch.cuda.is_available():

View File

@ -18,7 +18,7 @@
import argparse
import logging
from datetime import datetime
import os
from pathlib import Path
import torch
@ -32,7 +32,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_parser():
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
@ -71,17 +71,15 @@ def get_parser():
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
return parser
return parser.parse_args()
def compute_fbank_gigaspeech_splits(args):
num_splits = args.num_splits
output_dir = f"data/fbank/XL_split"
output_dir = "data/fbank/gigaspeech_XL_split"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"
num_digits = 8 # num_digits is fixed by lhotse split-lazy
start = args.start
stop = args.stop
if stop < start:
@ -95,6 +93,7 @@ def compute_fbank_gigaspeech_splits(args):
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
num_digits = 8 # num_digits is fixed by lhotse split-lazy
for i in range(start, stop):
idx = f"{i}".zfill(num_digits)
logging.info(f"Processing {idx}/{num_splits}")
@ -105,15 +104,22 @@ def compute_fbank_gigaspeech_splits(args):
continue
raw_cuts_path = output_dir / f"gigaspeech_cuts_XL_raw.{idx}.jsonl.gz"
if not raw_cuts_path.is_file():
logging.info(f"{raw_cuts_path} does not exist - skipping it")
continue
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Computing features")
filename = output_dir / f"gigaspeech_feats_XL_{idx}.lca"
if filename.exists():
logging.info(f"Removing {filename}")
os.remove(str(filename))
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/gigaspeech_feats_{idx}",
storage_path=f"{output_dir}/gigaspeech_feats_XL_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
overwrite=True,
@ -130,29 +136,10 @@ def compute_fbank_gigaspeech_splits(args):
def main():
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
log_filename = "log-compute_fbank_gigaspeech_splits"
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
log_filename = f"{log_filename}-{date_time}"
logging.basicConfig(
filename=log_filename,
format=formatter,
level=logging.INFO,
filemode="w",
)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_gigaspeech_splits(args)

View File

@ -1 +0,0 @@
../../../librispeech/ASR/local/convert_transcript_words_to_tokens.py

View File

@ -30,18 +30,6 @@ from icefall.utils import str2bool
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Whether to use speed perturbation.",
)
return parser.parse_args()
def normalize_text(
utt: str,
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
@ -57,7 +45,7 @@ def has_no_oov(
return oov_pattern.search(sup.text) is None
def preprocess_giga_speech(args):
def preprocess_gigaspeech():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
output_dir.mkdir(exist_ok=True)
@ -66,10 +54,10 @@ def preprocess_giga_speech(args):
"DEV",
"TEST",
"XL",
"L",
"M",
"S",
"XS",
# "L",
# "M",
# "S",
# "XS",
)
logging.info("Loading manifest (may take 4 minutes)")
@ -110,17 +98,7 @@ def preprocess_giga_speech(args):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
# Run data augmentation that needs to be done in the
# time domain.
if partition not in ["DEV", "TEST"]:
if args.perturb_speed:
logging.info(
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
)
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
@ -129,8 +107,7 @@ def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
preprocess_giga_speech(args)
preprocess_gigaspeech()
if __name__ == "__main__":

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/validate_bpe_lexicon.py

View File

@ -6,12 +6,24 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=0
stop_stage=100
# Split XL subset to a number of pieces (about 2000)
# This is to avoid OOM during feature extraction.
num_per_split=50
# Run step 0 to step 8 by default
stage=0
stop_stage=8
# Compute fbank features for a subset of splits from `start` (inclusive) to `stop` (exclusive)
start=0
stop=-1 # -1 means until the end
# Note: This script just prepares the minimal requirements needed by a
# transducer training with bpe units.
#
# If you want to use ngram, please continue running prepare_lm.sh after
# you succeed in running this script.
#
# This script also contains the steps to generate phone based units, but they
# will not run automatically, you can generate the phone based units by
# bash prepare.sh --stage 9 --stop-stage 9
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
@ -34,9 +46,10 @@ num_per_split=50
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
@ -45,6 +58,9 @@ dl_dir=$PWD/download
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
@ -58,10 +74,12 @@ log() {
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "Running prepare.sh"
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: Download LM"
log "Stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
@ -78,7 +96,7 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
# If you have pre-downloaded it to /path/to/GigaSpeech,
# you can create a symlink
#
# ln -sfv /path/to/GigaSpeech $dl_dir/GigaSpeech
# ln -svf /path/to/GigaSpeech $dl_dir/GigaSpeech
#
if [ ! -d $dl_dir/GigaSpeech/audio ] && [ ! -f $dl_dir/GigaSpeech.json ]; then
# Check credentials.
@ -88,32 +106,37 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
echo " and save it to $dl_dir/password."
exit 1;
fi
PASSWORD=`cat $dl_dir/password 2>/dev/null`
if [ -z "$PASSWORD" ]; then
echo "$0: Error, $dl_dir/password is empty."
exit 1;
fi
PASSWORD_MD5=`echo $PASSWORD | md5sum | cut -d ' ' -f 1`
if [[ $PASSWORD_MD5 != "dfbf0cde1a3ce23749d8d81e492741b8" ]]; then
echo "$0: Error, invalid $dl_dir/password."
exit 1;
fi
# Download XL, DEV and TEST sets by default.
lhotse download gigaspeech --subset XL \
--subset L \
--subset M \
--subset S \
--subset XS \
# Support hosts:
# 1. oss
# 2. tsinghua
# 3. speechocean
# 4. magicdata
lhotse download gigaspeech \
--host magicdata \
--subset DEV \
--subset TEST \
--host tsinghua \
--subset XL \
$dl_dir/password $dl_dir/GigaSpeech
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
# ln -svf /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
@ -125,11 +148,8 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
# We assume that you have downloaded the GigaSpeech corpus
# to $dl_dir/GigaSpeech
mkdir -p data/manifests
lhotse prepare gigaspeech --subset XL \
--subset L \
--subset M \
--subset S \
--subset XS \
lhotse prepare gigaspeech \
--subset XL \
--subset DEV \
--subset TEST \
-j $nj \
@ -147,19 +167,20 @@ fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "State 3: Preprocess GigaSpeech manifest"
if [ ! -f data/fbank/.preprocess_complete ]; then
python3 ./local/preprocess_gigaspeech.py
touch data/fbank/.preprocess_complete
python3 ./local/preprocess_gigaspeech.py
touch data/fbank/.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute features for L, M, S, XS, DEV and TEST subsets of GigaSpeech."
log "Stage 4: Compute features for DEV, TEST, L, M, S, and XS subsets of GigaSpeech."
python3 ./local/compute_fbank_gigaspeech.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split XL subset into pieces (may take 30 minutes)"
split_dir=data/fbank/XL_split
log "Stage 5: Split XL subset into pieces (may take 5 minutes)"
num_per_split=50
split_dir=data/fbank/gigaspeech_XL_split
if [ ! -f $split_dir/.split_completed ]; then
lhotse split-lazy ./data/fbank/gigaspeech_cuts_XL_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.split_completed
@ -168,82 +189,63 @@ fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute features for XL"
num_splits=$(find data/fbank/XL_split -name "gigaspeech_cuts_XL_raw.*.jsonl.gz" | wc -l)
split_dir=data/fbank/gigaspeech_XL_split
num_splits=$(find $split_dir -name "gigaspeech_cuts_XL_raw.*.jsonl.gz" | wc -l)
python3 ./local/compute_fbank_gigaspeech_splits.py \
--num-workers 20 \
--batch-duration 600 \
--num-splits $num_splits
--num-splits $num_splits \
--start $start \
--stop $stop
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Combine features for XL (may take 3 hours)"
if [ ! -f data/fbank/gigaspeech_cuts_XL.jsonl.gz ]; then
pieces=$(find data/fbank/XL_split -name "gigaspeech_cuts_XL.*.jsonl.gz")
lhotse combine $pieces data/fbank/gigaspeech_cuts_XL.jsonl.gz
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compute fbank for musan"
log "Stage 7: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Prepare transcript_words.txt and words.txt"
lang_dir=data/lang_phone
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
gunzip -c "data/manifests/gigaspeech_supervisions_XL.jsonl.gz" \
| jq '.text' \
| sed 's/"//g' \
> $lang_dir/transcript_words.txt
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# Delete utterances with garbage meta tags
garbage_utterance_tags="<SIL> <MUSIC> <NOISE> <OTHER>"
for tag in $garbage_utterance_tags; do
sed -i "/${tag}/d" $lang_dir/transcript_words.txt
done
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
gunzip -c "data/manifests/gigaspeech_supervisions_XL.jsonl.gz" \
| jq '.text' \
| sed 's/"//g' \
> $lang_dir/transcript_words.txt
# Delete punctuations in utterances
punctuation_tags="<COMMA> <EXCLAMATIONPOINT> <PERIOD> <QUESTIONMARK>"
for tag in $punctuation_tags; do
sed -i "s/${tag}//g" $lang_dir/transcript_words.txt
done
# Delete utterances with garbage meta tags
garbage_utterance_tags="<SIL> <MUSIC> <NOISE> <OTHER>"
for tag in $garbage_utterance_tags; do
sed -i "/${tag}/d" $lang_dir/transcript_words.txt
done
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
fi
# Delete punctuations in utterances
punctuation_tags="<COMMA> <EXCLAMATIONPOINT> <PERIOD> <QUESTIONMARK>"
for tag in $punctuation_tags; do
sed -i "s/${tag}//g" $lang_dir/transcript_words.txt
done
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
cat - $lang_dir/words.txt | sort | uniq | awk '
BEGIN {
print "<eps> 0";
}
{
if ($1 == "<s>") {
print "<s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
if ($1 == "</s>") {
print "</s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
printf("%s %d\n", $1, NR);
}
END {
printf("#0 %d\n", NR+1);
printf("<s> %d\n", NR+2);
printf("</s> %d\n", NR+3);
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Prepare phone based lang"
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
@ -255,93 +257,3 @@ if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/{words.txt,transcript_words.txt} $lang_dir
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
fi
done
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Prepare bigram P"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_dir/transcript_tokens.txt
fi
if [ ! -f $lang_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
fi
if [ ! -f $lang_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_dir/P.arpa > $lang_dir/P.fst.txt
fi
done
fi
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
log "Stage 13: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/3gram_pruned_1e7.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/4gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
log "Stage 14: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
done
fi

View File

@ -0,0 +1,98 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
# This script generates Ngram LM and related files needed by decoding.
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/lm
# This directory contains the language model downloaded from
# https://huggingface.co/wgb14/gigaspeech_lm
#
# - 3gram_pruned_1e7.arpa.gz
# - 4gram.arpa.gz
# - lexicon.txt
. prepare.sh --stage -1 --stop-stage 9 || exit 1
stage=0
stop_stage=100
. shared/parse_options.sh || exit 1
log "Running prepare_lm.sh"
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare BPE based lexicon"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare word-level G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/3gram_pruned_1e7.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/4gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compile LG"
# It is used for for RNN-T fast_beam_search decoding
./local/compile_lg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi

View File

@ -219,6 +219,8 @@ class GigaSpeechAsrDataModule:
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
world_size: Optional[int] = None,
rank: Optional[int] = None,
) -> DataLoader:
"""
Args:
@ -313,6 +315,8 @@ class GigaSpeechAsrDataModule:
num_buckets=self.args.num_buckets,
buffer_size=self.args.num_buckets * 5000,
drop_last=self.args.drop_last,
world_size=world_size,
rank=rank,
)
else:
logging.info("Using SimpleCutSampler.")
@ -320,6 +324,8 @@ class GigaSpeechAsrDataModule:
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
world_size=world_size,
rank=rank,
)
logging.info("About to create train dataloader")
@ -343,7 +349,12 @@ class GigaSpeechAsrDataModule:
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
def valid_dataloaders(
self,
cuts_valid: CutSet,
world_size: Optional[int] = None,
rank: Optional[int] = None,
) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
@ -370,6 +381,8 @@ class GigaSpeechAsrDataModule:
num_buckets=self.args.num_buckets,
buffer_size=self.args.num_buckets * 5000,
shuffle=False,
world_size=world_size,
rank=rank,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
@ -409,7 +422,7 @@ class GigaSpeechAsrDataModule:
logging.info(f"About to get train {self.args.subset} cuts")
if self.args.subset == "XL":
filenames = glob.glob(
f"{self.args.manifest_dir}/XL_split/gigaspeech_cuts_XL.*.jsonl.gz"
f"{self.args.manifest_dir}/gigaspeech_XL_split/gigaspeech_cuts_XL.*.jsonl.gz"
)
pattern = re.compile(r"gigaspeech_cuts_XL.([0-9]+).jsonl.gz")
idx_filenames = ((int(pattern.search(f).group(1)), f) for f in filenames)

View File

@ -1202,12 +1202,19 @@ def run(rank, world_size, args):
sampler_state_dict = None
train_dl = gigaspeech.train_dataloaders(
train_cuts, sampler_state_dict=sampler_state_dict
train_cuts,
sampler_state_dict=sampler_state_dict,
world_size=world_size,
rank=rank,
)
valid_cuts = gigaspeech.dev_cuts()
valid_cuts = valid_cuts.filter(remove_short_utt)
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
valid_dl = gigaspeech.valid_dataloaders(
valid_cuts,
world_size=world_size,
rank=rank,
)
if not params.print_diagnostics and params.scan_for_oom_batches:
scan_pessimistic_batches_for_oom(

View File

@ -245,7 +245,6 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Train BPE model for unnormalized text"
if [ ! -f data/punc_texts ]; then

View File

@ -10,11 +10,11 @@ nj=15
stage=0
stop_stage=5
# Note: This script just prepare the minimal requirements that needed by a
# Note: This script just prepares the minimal requirements needed by a
# transducer training with bpe units.
#
# If you want to use ngram or nnlm, please continue running prepare_lm.sh after
# you succeed running this script.
# you succeed in running this script.
#
# This script also contains the steps to generate phone based units, but they
# will not run automatically, you can generate the phone based units by

View File

@ -5,7 +5,7 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
# This script generate Ngram LM / NNLM and related files that needed by decoding.
# This script generates Ngram LM / NNLM and related files needed by decoding.
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded