icefall/egs/libriheavy/ASR/prepare.sh

319 lines
9.7 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
export CUDA_VISIBLE_DEVICES=""
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/librilight
# You can find small, medium, large, etc. inside it.
#
# - $dl_dir/libriheavy
# You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
# If you want to do PromptASR experiments, please set it to True
# as this will keep the texts and pre_text information required for
# the training of PromptASR.
keep_custom_fields=False
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
fbank_dir=data/fbank
manifests_dir=data/manifests
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download audio data."
# If you have pre-downloaded it to /path/to/librilight,
# you can create a symlink
#
# ln -sfv /path/to/librilight $dl_dir/librilight
#
mkdir -p $dl_dir/librilight
for subset in small medium large; do
log "Downloading ${subset} subset."
if [ ! -d $dl_dir/librilight/${subset} ]; then
wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar
tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight
else
log "Skipping download, ${subset} subset exists."
fi
done
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download manifests from huggingface."
# If you have pre-downloaded it to /path/to/libriheavy,
# you can create a symlink
#
# ln -sfv /path/to/libriheavy $dl_dir/libriheavy
#
mkdir -p $dl_dir/libriheavy
for subset in small medium large dev test_clean test_other; do
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Downloading ${subset} subset."
wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz
else
log "Skipping download, ${subset} subset exists."
fi
done
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Download manifests from modelscope"
mkdir -p $dl_dir/libriheavy
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_small.jsonl.gz ]; then
cd $dl_dir/libriheavy
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/datasets/pkufool/Libriheavy.git
cd Libriheavy
git lfs pull --exclude "raw/*"
mv *.jsonl.gz ../
cd ..
rm -rf Libriheavy
cd ../../
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p $manifests_dir
if [ ! -e $manifests_dir/.musan.done ]; then
lhotse prepare musan $dl_dir/musan $manifests_dir
touch $manifests_dir/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare Libriheavy manifests"
mkdir -p $manifests_dir
for subset in small medium large dev test_clean test_other; do
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Prepare manifest for subset : ${subset}"
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir $keep_custom_fields
fi
done
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p $fbank_dir
if [ ! -e $fbank_dir/.musan.done ]; then
./local/compute_fbank_musan.py
touch $fbank_dir/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for small subset and validation subsets"
for subset in test_clean test_other dev small; do
log "Computing $subset subset."
if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then
./local/compute_fbank_libriheavy.py \
--manifest-dir ${manifests_dir} \
--subset ${subset} \
--fbank-dir $fbank_dir \
--num-workers $nj
fi
done
fi
num_per_split=8000
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Split medium and large subsets."
for subset in medium large; do
log "Spliting subset : $subset"
split_dir=$manifests_dir/libriheavy_${subset}_split
mkdir -p $split_dir
if [ ! -e $split_dir/.split_completed ]; then
lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split
touch $split_dir/.split_completed
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank for medium and large subsets"
mkdir -p $fbank_dir
chunk_size=20
for subset in medium large; do
if [ $subset == "large" ]; then
chunk_size=200
fi
num_splits=$(find $manifests_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz" | wc -l)
if [ ! -e $fbank_dir/.libriheavy.${subset}.done ]; then
for i in $(seq 0 1 6); do
start=$(( i * $chunk_size ))
end=$(( (i+1) * $chunk_size ))
./local/compute_fbank_libriheavy.py \
--manifest-dir ${manifests_dir} \
--use-splits 1 \
--subset ${subset} \
--fbank-dir $fbank_dir \
--num-splits $num_splits \
--num-workers $nj \
--start $start \
--stop $end &
done
wait
touch $fbank_dir/.libriheavy.${subset}.done
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Combine features for medium and large subsets."
for subset in medium large; do
log "Combining $subset subset."
if [ ! -f $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
pieces=$(find $fbank_dir/libriheavy_${subset}_split -name "libriheavy_cuts_${subset}.*.jsonl.gz")
lhotse combine $pieces $fbank_dir/libriheavy_cuts_${subset}.jsonl.gz
fi
done
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Train BPE model for normalized text"
if [ ! -f data/texts ]; then
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
| ./local/norm_text.py > data/texts
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
cp data/texts $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
done
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Train BPE model for unnormalized text"
if [ ! -f data/punc_texts ]; then
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' > data/punc_texts
fi
for vocab_size in ${vocab_sizes[@]}; do
new_vocab_size=$(($vocab_size + 256))
lang_dir=data/lang_punc_bpe_${new_vocab_size}
mkdir -p $lang_dir
cp data/punc_texts $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--byte-fallback \
--vocab-size ${new_vocab_size} \
--byte-fallback \
--character-coverage 0.99 \
--transcript $lang_dir/text
fi
done
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Prepare language model for normalized text"
for subset in small medium large; do
if [ ! -f $manifests_dir/texts_${subset} ]; then
gunzip -c $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
| ./local/norm_text.py > $manifests_dir/texts_${subset}
fi
done
mkdir -p data/lm
if [ ! -f data/lm/text ]; then
cat $manifests_dir/texts_small $manifests_dir/texts_medium $manifests_dir/texts_large > data/lm/text
fi
(echo '<eps> 0'; echo '!SIL 1'; echo '<SPOKEN_NOISE> 2'; echo '<UNK> 3';) \
> data/lm/words.txt
cat data/lm/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| awk '{print $1" "NR+3}' >> data/lm/words.txt
num_lines=$(< data/lm/words.txt wc -l)
(echo "#0 $num_lines"; echo "<s> $(($num_lines + 1))"; echo "</s> $(($num_lines + 2))";) \
>> data/lm/words.txt
# Train LM on transcripts
if [ ! -f data/lm/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text data/lm/text \
-lm data/lm/3-gram.unpruned.arpa
fi
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table=data/lm/words.txt \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
fi
fi