mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
246 lines
7.0 KiB
Bash
Executable File
246 lines
7.0 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
# run step 0 to step 5 by default
|
|
stage=0
|
|
stop_stage=5
|
|
|
|
# Note: This script just prepares the minimal requirements needed by a
|
|
# transducer training with bpe units.
|
|
#
|
|
# If you want to use ngram or nnlm, please continue running prepare_lm.sh after
|
|
# you succeed in running this script.
|
|
#
|
|
# This script also contains the steps to generate phone based units, but they
|
|
# will not run automatically, you can generate the phone based units by
|
|
# bash prepare.sh --stage -1 --stop-stage -1
|
|
# bash prepare.sh --stage 6 --stop-stage 6
|
|
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/LibriSpeech
|
|
# You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it.
|
|
# You can download them from https://www.openslr.org/12
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
#
|
|
# lm directory is not necessary for transducer training with bpe units, but it
|
|
# is needed by phone based modeling, you can download it by running
|
|
# bash prepare.sh --stage -1 --stop-stage -1
|
|
# then you can see the following files in the directory.
|
|
# - $dl_dir/lm
|
|
# This directory contains the following files downloaded from
|
|
# http://www.openslr.org/resources/11
|
|
#
|
|
# - 3-gram.pruned.1e-7.arpa.gz
|
|
# - 3-gram.pruned.1e-7.arpa
|
|
# - 4-gram.arpa.gz
|
|
# - 4-gram.arpa
|
|
# - librispeech-vocab.txt
|
|
# - librispeech-lexicon.txt
|
|
# - librispeech-lm-norm.txt.gz
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bpe_xxx,
|
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
# 5000
|
|
# 2000
|
|
# 1000
|
|
500
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "Running prepare.sh"
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
|
log "Stage -1: Download LM"
|
|
mkdir -p $dl_dir/lm
|
|
if [ ! -e $dl_dir/lm/.done ]; then
|
|
./local/download_lm.py --out-dir=$dl_dir/lm
|
|
touch $dl_dir/lm/.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/LibriSpeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech
|
|
#
|
|
if [ ! -d $dl_dir/LibriSpeech/train-other-500 ]; then
|
|
lhotse download librispeech --full $dl_dir
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare LibriSpeech manifest"
|
|
# We assume that you have downloaded the LibriSpeech corpus
|
|
# to $dl_dir/LibriSpeech
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.librispeech.done ]; then
|
|
lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests
|
|
touch data/manifests/.librispeech.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to $dl_dir/musan
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.musan.done ]; then
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for librispeech"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.librispeech.done ]; then
|
|
./local/compute_fbank_librispeech.py
|
|
touch data/fbank/.librispeech.done
|
|
fi
|
|
|
|
if [ ! -f data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz ]; then
|
|
cat <(gunzip -c data/fbank/librispeech_cuts_train-clean-100.jsonl.gz) \
|
|
<(gunzip -c data/fbank/librispeech_cuts_train-clean-360.jsonl.gz) \
|
|
<(gunzip -c data/fbank/librispeech_cuts_train-other-500.jsonl.gz) | \
|
|
shuf | gzip -c > data/fbank/librispeech_cuts_train-all-shuf.jsonl.gz
|
|
fi
|
|
|
|
if [ ! -e data/fbank/.librispeech-validated.done ]; then
|
|
log "Validating data/fbank for LibriSpeech"
|
|
parts=(
|
|
train-clean-100
|
|
train-clean-360
|
|
train-other-500
|
|
test-clean
|
|
test-other
|
|
dev-clean
|
|
dev-other
|
|
)
|
|
for part in ${parts[@]}; do
|
|
python3 ./local/validate_manifest.py \
|
|
data/fbank/librispeech_cuts_${part}.jsonl.gz
|
|
done
|
|
touch data/fbank/.librispeech-validated.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.musan.done ]; then
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare BPE based lang"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=data/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
|
|
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
|
log "Generate data for BPE training"
|
|
files=$(
|
|
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
|
|
find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt"
|
|
find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt"
|
|
)
|
|
for f in ${files[@]}; do
|
|
cat $f | cut -d " " -f 2-
|
|
done > $lang_dir/transcript_words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/bpe.model ]; then
|
|
./local/train_bpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript $lang_dir/transcript_words.txt
|
|
fi
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Prepare phone based lang"
|
|
lang_dir=data/lang_phone
|
|
mkdir -p $lang_dir
|
|
|
|
if [ ! -f $dl_dir/lm/librispeech-lexicon.txt ]; then
|
|
log "No lexicon file in $dl_dir/lm, please run :"
|
|
log "prepare.sh --stage -1 --stop-stage -1"
|
|
exit -1
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/lexicon.txt ]; then
|
|
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
|
cat - $dl_dir/lm/librispeech-lexicon.txt |
|
|
sort | uniq > $lang_dir/lexicon.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang.py --lang-dir $lang_dir
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L.fst ]; then
|
|
log "Converting L.pt to L.fst"
|
|
./shared/convert-k2-to-openfst.py \
|
|
--olabels aux_labels \
|
|
$lang_dir/L.pt \
|
|
$lang_dir/L.fst
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
|
log "Converting L_disambig.pt to L_disambig.fst"
|
|
./shared/convert-k2-to-openfst.py \
|
|
--olabels aux_labels \
|
|
$lang_dir/L_disambig.pt \
|
|
$lang_dir/L_disambig.fst
|
|
fi
|
|
fi
|