mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Add recipe for the yes_no dataset. (#16)
* Add recipe for the yes_no dataset. * Refactoring: Remove unused code. * Add Colab notebook for the yesno dataset. * Add GitHub actions to run yesno. * Fix a typo. * Minor fixes. * Train more epochs for GitHub actions. * Minor fixes. * Minor fixes. * Fix style issues.
This commit is contained in:
parent
19c4214958
commit
6c2c9b9d74
89
.github/workflows/run-yesno-recipe.yml
vendored
Normal file
89
.github/workflows/run-yesno-recipe.yml
vendored
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-yesno-recipe
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run-yesno-recipe:
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
# os: [ubuntu-18.04, macos-10.15]
|
||||||
|
# TODO: enable macOS for CPU testing
|
||||||
|
os: [ubuntu-18.04]
|
||||||
|
python-version: [3.8]
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v1
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
|
||||||
|
- name: Install libnsdfile and libsox
|
||||||
|
if: startsWith(matrix.os, 'ubuntu')
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -q -y libsndfile1-dev libsndfile1 ffmpeg
|
||||||
|
sudo apt install -q -y --fix-missing sox libsox-dev libsox-fmt-all
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
python3 -m pip install --upgrade pip black flake8
|
||||||
|
python3 -m pip install -U pip
|
||||||
|
python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
|
||||||
|
python3 -m pip install torchaudio==0.7.2
|
||||||
|
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
|
|
||||||
|
# We are in ./icefall and there is a file: requirements.txt in it
|
||||||
|
python3 -m pip install -r requirements.txt
|
||||||
|
|
||||||
|
- name: Run yesno recipe
|
||||||
|
shell: bash
|
||||||
|
working-directory: ${{github.workspace}}
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
echo $PYTHONPATH
|
||||||
|
ls -lh
|
||||||
|
|
||||||
|
# The following three lines are for macOS
|
||||||
|
lib_path=$(python -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())")
|
||||||
|
echo "lib_path: $lib_path"
|
||||||
|
export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH
|
||||||
|
ls -lh $lib_path
|
||||||
|
|
||||||
|
cd egs/yesno/ASR
|
||||||
|
./prepare.sh
|
||||||
|
python3 ./tdnn/train.py --num-epochs 100
|
||||||
|
python3 ./tdnn/decode.py --epoch 99
|
||||||
|
python3 ./tdnn/decode.py --epoch 95
|
||||||
|
python3 ./tdnn/decode.py --epoch 90
|
||||||
|
python3 ./tdnn/decode.py --epoch 80
|
||||||
|
python3 ./tdnn/decode.py --epoch 70
|
||||||
|
python3 ./tdnn/decode.py --epoch 60
|
||||||
|
# TODO: Check that the WER is less than some value
|
19
README.md
19
README.md
@ -48,10 +48,22 @@ python3 -c "import icefall; print(icefall.__file__)"
|
|||||||
|
|
||||||
It should print the path to `icefall`.
|
It should print the path to `icefall`.
|
||||||
|
|
||||||
## Run recipes
|
## Recipes
|
||||||
|
|
||||||
At present, only LibriSpeech recipe is provided. Please
|
At present, two recipes are provided:
|
||||||
follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it.
|
|
||||||
|
- [LibriSpeech][LibriSpeech]
|
||||||
|
- [yesno][yesno] [](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
|
||||||
|
|
||||||
|
### Yesno
|
||||||
|
|
||||||
|
For the yesno recipe, training with 50 epochs takes less than 2 minutes using **CPU**.
|
||||||
|
|
||||||
|
The WER is
|
||||||
|
|
||||||
|
```
|
||||||
|
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||||
|
```
|
||||||
|
|
||||||
## Use Pre-trained models
|
## Use Pre-trained models
|
||||||
|
|
||||||
@ -60,6 +72,7 @@ for how to use pre-trained models.
|
|||||||
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
||||||
|
|
||||||
|
|
||||||
|
[yesno]: egs/yesno/ASR/README.md
|
||||||
[LibriSpeech]: egs/librispeech/ASR/README.md
|
[LibriSpeech]: egs/librispeech/ASR/README.md
|
||||||
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
||||||
[k2]: https://github.com/k2-fsa/k2
|
[k2]: https://github.com/k2-fsa/k2
|
||||||
|
@ -18,7 +18,7 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
This file computes fbank features of the LibriSpeech dataset.
|
This file computes fbank features of the LibriSpeech dataset.
|
||||||
Its looks for manifests in the directory data/manifests.
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
The generated fbank features are saved in data/fbank.
|
||||||
"""
|
"""
|
||||||
|
@ -18,7 +18,7 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
This file computes fbank features of the musan dataset.
|
This file computes fbank features of the musan dataset.
|
||||||
Its looks for manifests in the directory data/manifests.
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
The generated fbank features are saved in data/fbank.
|
||||||
"""
|
"""
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Piotr Żelasko
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -40,7 +40,7 @@ from icefall.utils import str2bool
|
|||||||
|
|
||||||
class LibriSpeechAsrDataModule(DataModule):
|
class LibriSpeechAsrDataModule(DataModule):
|
||||||
"""
|
"""
|
||||||
DataModule for K2 ASR experiments.
|
DataModule for k2 ASR experiments.
|
||||||
It assumes there is always one train and valid dataloader,
|
It assumes there is always one train and valid dataloader,
|
||||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
and test-other).
|
and test-other).
|
||||||
|
@ -348,7 +348,7 @@ def main():
|
|||||||
logging.info(f"device: {device}")
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
HLG = k2.Fsa.from_dict(
|
HLG = k2.Fsa.from_dict(
|
||||||
torch.load("data/lang_phone/HLG.pt", map_location="cpu")
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
)
|
)
|
||||||
HLG = HLG.to(device)
|
HLG = HLG.to(device)
|
||||||
assert HLG.requires_grad is False
|
assert HLG.requires_grad is False
|
||||||
|
15
egs/yesno/ASR/README.md
Normal file
15
egs/yesno/ASR/README.md
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
## Yesno recipe
|
||||||
|
|
||||||
|
You can run the recipe with **CPU**.
|
||||||
|
|
||||||
|
|
||||||
|
[](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
|
||||||
|
|
||||||
|
The above Colab notebook finishes the training using **CPU**
|
||||||
|
within two minutes (50 epochs in total).
|
||||||
|
|
||||||
|
The WER is
|
||||||
|
|
||||||
|
```
|
||||||
|
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||||
|
```
|
134
egs/yesno/ASR/local/compile_hlg.py
Executable file
134
egs/yesno/ASR/local/compile_hlg.py
Executable file
@ -0,0 +1,134 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input lang_dir and generates HLG from
|
||||||
|
|
||||||
|
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||||
|
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||||
|
|
||||||
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
|
|
||||||
|
- G, the LM, built from data/lm/G.fst.txt
|
||||||
|
|
||||||
|
The generated HLG is saved in $lang_dir/HLG.pt
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
An FSA representing HLG.
|
||||||
|
"""
|
||||||
|
lexicon = Lexicon(lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||||
|
H = k2.ctc_topo(max_token_id)
|
||||||
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||||
|
|
||||||
|
logging.info("Loading G.fst.txt")
|
||||||
|
with open("data/lm/G.fst.txt") as f:
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
|
||||||
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
L = k2.arc_sort(L)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
logging.info("Intersecting L and G")
|
||||||
|
LG = k2.compose(L, G)
|
||||||
|
logging.info(f"LG shape: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
logging.info("Determinizing LG")
|
||||||
|
|
||||||
|
LG = k2.determinize(LG)
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
|
||||||
|
logging.info("Connecting LG after k2.determinize")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
|
||||||
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
|
||||||
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
|
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
||||||
|
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
|
LG = k2.remove_epsilon(LG)
|
||||||
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
|
logging.info("Composing H and LG")
|
||||||
|
# CAUTION: The name of the inner_labels is fixed
|
||||||
|
# to `tokens`. If you want to change it, please
|
||||||
|
# also change other places in icefall that are using
|
||||||
|
# it.
|
||||||
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
HLG = k2.connect(HLG)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
HLG = k2.arc_sort(HLG)
|
||||||
|
logging.info(f"HLG.shape: {HLG.shape}")
|
||||||
|
|
||||||
|
return HLG
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
if (lang_dir / "HLG.pt").is_file():
|
||||||
|
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info(f"Processing {lang_dir}")
|
||||||
|
|
||||||
|
HLG = compile_HLG(lang_dir)
|
||||||
|
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||||
|
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
81
egs/yesno/ASR/local/compute_fbank_yesno.py
Executable file
81
egs/yesno/ASR/local/compute_fbank_yesno.py
Executable file
@ -0,0 +1,81 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the yesno dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or it wastes a
|
||||||
|
# lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_yesno():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
|
||||||
|
# This dataset is rather small, so we use only one job
|
||||||
|
num_jobs = min(1, os.cpu_count())
|
||||||
|
num_mel_bins = 23
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"train",
|
||||||
|
"test",
|
||||||
|
)
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts, output_dir=src_dir
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"cuts_{partition}.json.gz").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
if "train" in partition:
|
||||||
|
cut_set = (
|
||||||
|
cut_set
|
||||||
|
+ cut_set.perturb_speed(0.9)
|
||||||
|
+ cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 1, # use one job
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomHdf5Writer,
|
||||||
|
)
|
||||||
|
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
compute_fbank_yesno()
|
367
egs/yesno/ASR/local/prepare_lang.py
Executable file
367
egs/yesno/ASR/local/prepare_lang.py
Executable file
@ -0,0 +1,367 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
||||||
|
consisting of words and tokens (i.e., phones) and does the following:
|
||||||
|
|
||||||
|
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||||
|
|
||||||
|
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||||
|
|
||||||
|
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||||
|
|
||||||
|
4. Generate L.pt, in k2 format. It can be loaded by
|
||||||
|
|
||||||
|
d = torch.load("L.pt")
|
||||||
|
lexicon = k2.Fsa.from_dict(d)
|
||||||
|
|
||||||
|
5. Generate L_disambig.pt, in k2 format.
|
||||||
|
"""
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import read_lexicon, write_lexicon
|
||||||
|
|
||||||
|
Lexicon = List[Tuple[str, List[str]]]
|
||||||
|
|
||||||
|
|
||||||
|
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||||
|
"""Write a symbol to ID mapping to a file.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
No need to implement `read_mapping` as it can be done
|
||||||
|
through :func:`k2.SymbolTable.from_file`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Filename to save the mapping.
|
||||||
|
sym2id:
|
||||||
|
A dict mapping symbols to IDs.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
|
for sym, i in sym2id.items():
|
||||||
|
f.write(f"{sym} {i}\n")
|
||||||
|
|
||||||
|
|
||||||
|
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||||
|
"""Get tokens from a lexicon.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is the return value of :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a list of unique tokens.
|
||||||
|
"""
|
||||||
|
ans = set()
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
ans.update(tokens)
|
||||||
|
sorted_ans = sorted(list(ans))
|
||||||
|
return sorted_ans
|
||||||
|
|
||||||
|
|
||||||
|
def get_words(lexicon: Lexicon) -> List[str]:
|
||||||
|
"""Get words from a lexicon.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is the return value of :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a list of unique words.
|
||||||
|
"""
|
||||||
|
ans = set()
|
||||||
|
for word, _ in lexicon:
|
||||||
|
ans.add(word)
|
||||||
|
sorted_ans = sorted(list(ans))
|
||||||
|
return sorted_ans
|
||||||
|
|
||||||
|
|
||||||
|
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||||
|
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||||
|
at the ends of tokens to ensure that all pronunciations are different,
|
||||||
|
and that none is a prefix of another.
|
||||||
|
|
||||||
|
See also add_lex_disambig.pl from kaldi.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is returned by :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two elements:
|
||||||
|
|
||||||
|
- The output lexicon with disambiguation symbols
|
||||||
|
- The ID of the max disambiguation symbol that appears
|
||||||
|
in the lexicon
|
||||||
|
"""
|
||||||
|
|
||||||
|
# (1) Work out the count of each token-sequence in the
|
||||||
|
# lexicon.
|
||||||
|
count = defaultdict(int)
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
count[" ".join(tokens)] += 1
|
||||||
|
|
||||||
|
# (2) For each left sub-sequence of each token-sequence, note down
|
||||||
|
# that it exists (for identifying prefixes of longer strings).
|
||||||
|
issubseq = defaultdict(int)
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
tokens = tokens.copy()
|
||||||
|
tokens.pop()
|
||||||
|
while tokens:
|
||||||
|
issubseq[" ".join(tokens)] = 1
|
||||||
|
tokens.pop()
|
||||||
|
|
||||||
|
# (3) For each entry in the lexicon:
|
||||||
|
# if the token sequence is unique and is not a
|
||||||
|
# prefix of another word, no disambig symbol.
|
||||||
|
# Else output #1, or #2, #3, ... if the same token-seq
|
||||||
|
# has already been assigned a disambig symbol.
|
||||||
|
ans = []
|
||||||
|
|
||||||
|
# We start with #1 since #0 has its own purpose
|
||||||
|
first_allowed_disambig = 1
|
||||||
|
max_disambig = first_allowed_disambig - 1
|
||||||
|
last_used_disambig_symbol_of = defaultdict(int)
|
||||||
|
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
tokenseq = " ".join(tokens)
|
||||||
|
assert tokenseq != ""
|
||||||
|
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||||
|
ans.append((word, tokens))
|
||||||
|
continue
|
||||||
|
|
||||||
|
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||||
|
if cur_disambig == 0:
|
||||||
|
cur_disambig = first_allowed_disambig
|
||||||
|
else:
|
||||||
|
cur_disambig += 1
|
||||||
|
|
||||||
|
if cur_disambig > max_disambig:
|
||||||
|
max_disambig = cur_disambig
|
||||||
|
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||||
|
tokenseq += f" #{cur_disambig}"
|
||||||
|
ans.append((word, tokenseq.split()))
|
||||||
|
return ans, max_disambig
|
||||||
|
|
||||||
|
|
||||||
|
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||||
|
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
symbols:
|
||||||
|
A list of unique symbols.
|
||||||
|
Returns:
|
||||||
|
A dict containing the mapping between symbols and IDs.
|
||||||
|
"""
|
||||||
|
return {sym: i for i, sym in enumerate(symbols)}
|
||||||
|
|
||||||
|
|
||||||
|
def add_self_loops(
|
||||||
|
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||||
|
) -> List[List[Any]]:
|
||||||
|
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||||
|
through it. They are added on each state with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state.
|
||||||
|
|
||||||
|
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||||
|
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||||
|
This function uses k2 style FSTs and it does not need to add self-loops
|
||||||
|
to the final state.
|
||||||
|
|
||||||
|
The input label of a self-loop is `disambig_token`, while the output
|
||||||
|
label is `disambig_word`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
arcs:
|
||||||
|
A list-of-list. The sublist contains
|
||||||
|
`[src_state, dest_state, label, aux_label, score]`
|
||||||
|
disambig_token:
|
||||||
|
It is the token ID of the symbol `#0`.
|
||||||
|
disambig_word:
|
||||||
|
It is the word ID of the symbol `#0`.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return new `arcs` containing self-loops.
|
||||||
|
"""
|
||||||
|
states_needs_self_loops = set()
|
||||||
|
for arc in arcs:
|
||||||
|
src, dst, ilabel, olabel, score = arc
|
||||||
|
if olabel != 0:
|
||||||
|
states_needs_self_loops.add(src)
|
||||||
|
|
||||||
|
ans = []
|
||||||
|
for s in states_needs_self_loops:
|
||||||
|
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||||
|
|
||||||
|
return arcs + ans
|
||||||
|
|
||||||
|
|
||||||
|
def lexicon_to_fst(
|
||||||
|
lexicon: Lexicon,
|
||||||
|
token2id: Dict[str, int],
|
||||||
|
word2id: Dict[str, int],
|
||||||
|
sil_token: str = "SIL",
|
||||||
|
sil_prob: float = 0.5,
|
||||||
|
need_self_loops: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||||
|
the beginning and end of each word.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
|
token2id:
|
||||||
|
A dict mapping tokens to IDs.
|
||||||
|
word2id:
|
||||||
|
A dict mapping words to IDs.
|
||||||
|
sil_token:
|
||||||
|
The silence token.
|
||||||
|
sil_prob:
|
||||||
|
The probability for adding a silence at the beginning and end
|
||||||
|
of the word.
|
||||||
|
need_self_loops:
|
||||||
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
|
Returns:
|
||||||
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
|
"""
|
||||||
|
assert sil_prob > 0.0 and sil_prob < 1.0
|
||||||
|
# CAUTION: we use score, i.e, negative cost.
|
||||||
|
sil_score = math.log(sil_prob)
|
||||||
|
no_sil_score = math.log(1.0 - sil_prob)
|
||||||
|
|
||||||
|
start_state = 0
|
||||||
|
loop_state = 1 # words enter and leave from here
|
||||||
|
sil_state = 2 # words terminate here when followed by silence; this state
|
||||||
|
# has a silence transition to loop_state.
|
||||||
|
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||||
|
arcs = []
|
||||||
|
|
||||||
|
assert token2id["<eps>"] == 0
|
||||||
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
|
eps = 0
|
||||||
|
|
||||||
|
sil_token = token2id[sil_token]
|
||||||
|
|
||||||
|
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||||
|
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||||
|
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||||
|
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||||
|
cur_state = loop_state
|
||||||
|
|
||||||
|
word = word2id[word]
|
||||||
|
tokens = [token2id[i] for i in tokens]
|
||||||
|
|
||||||
|
for i in range(len(tokens) - 1):
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||||
|
|
||||||
|
cur_state = next_state
|
||||||
|
next_state += 1
|
||||||
|
|
||||||
|
# now for the last token of this word
|
||||||
|
# It has two out-going arcs, one to the loop state,
|
||||||
|
# the other one to the sil_state.
|
||||||
|
i = len(tokens) - 1
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||||
|
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||||
|
|
||||||
|
if need_self_loops:
|
||||||
|
disambig_token = token2id["#0"]
|
||||||
|
disambig_word = word2id["#0"]
|
||||||
|
arcs = add_self_loops(
|
||||||
|
arcs,
|
||||||
|
disambig_token=disambig_token,
|
||||||
|
disambig_word=disambig_word,
|
||||||
|
)
|
||||||
|
|
||||||
|
final_state = next_state
|
||||||
|
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||||
|
arcs.append([final_state])
|
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||||
|
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||||
|
arcs = [" ".join(arc) for arc in arcs]
|
||||||
|
arcs = "\n".join(arcs)
|
||||||
|
|
||||||
|
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||||
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
out_dir = Path("data/lang_phone")
|
||||||
|
lexicon_filename = out_dir / "lexicon.txt"
|
||||||
|
sil_token = "SIL"
|
||||||
|
sil_prob = 0.5
|
||||||
|
|
||||||
|
lexicon = read_lexicon(lexicon_filename)
|
||||||
|
tokens = get_tokens(lexicon)
|
||||||
|
words = get_words(lexicon)
|
||||||
|
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
disambig = f"#{i}"
|
||||||
|
assert disambig not in tokens
|
||||||
|
tokens.append(f"#{i}")
|
||||||
|
|
||||||
|
assert "<eps>" not in tokens
|
||||||
|
tokens = ["<eps>"] + tokens
|
||||||
|
|
||||||
|
assert "<eps>" not in words
|
||||||
|
assert "#0" not in words
|
||||||
|
assert "<s>" not in words
|
||||||
|
assert "</s>" not in words
|
||||||
|
|
||||||
|
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||||
|
|
||||||
|
token2id = generate_id_map(tokens)
|
||||||
|
word2id = generate_id_map(words)
|
||||||
|
|
||||||
|
write_mapping(out_dir / "tokens.txt", token2id)
|
||||||
|
write_mapping(out_dir / "words.txt", word2id)
|
||||||
|
write_lexicon(out_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
L = lexicon_to_fst(
|
||||||
|
lexicon,
|
||||||
|
token2id=token2id,
|
||||||
|
word2id=word2id,
|
||||||
|
sil_token=sil_token,
|
||||||
|
sil_prob=sil_prob,
|
||||||
|
)
|
||||||
|
|
||||||
|
L_disambig = lexicon_to_fst(
|
||||||
|
lexicon_disambig,
|
||||||
|
token2id=token2id,
|
||||||
|
word2id=word2id,
|
||||||
|
sil_token=sil_token,
|
||||||
|
sil_prob=sil_prob,
|
||||||
|
need_self_loops=True,
|
||||||
|
)
|
||||||
|
torch.save(L.as_dict(), out_dir / "L.pt")
|
||||||
|
torch.save(L_disambig.as_dict(), out_dir / "L_disambig.pt")
|
||||||
|
|
||||||
|
if False:
|
||||||
|
# Just for debugging, will remove it
|
||||||
|
L.labels_sym = k2.SymbolTable.from_file(out_dir / "tokens.txt")
|
||||||
|
L.aux_labels_sym = k2.SymbolTable.from_file(out_dir / "words.txt")
|
||||||
|
L_disambig.labels_sym = L.labels_sym
|
||||||
|
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||||
|
L.draw(out_dir / "L.png", title="L")
|
||||||
|
L_disambig.draw(out_dir / "L_disambig.png", title="L_disambig")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
93
egs/yesno/ASR/prepare.sh
Executable file
93
egs/yesno/ASR/prepare.sh
Executable file
@ -0,0 +1,93 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
lang_dir=data/lang_phone
|
||||||
|
lm_dir=data/lm
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
mkdir -p $lm_dir
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "stage 0: Download data"
|
||||||
|
mkdir -p $dl_dir
|
||||||
|
|
||||||
|
if [ ! -f $dl_dir/waves_yesno/.completed ]; then
|
||||||
|
lhotse download yesno $dl_dir
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Prepare yesno manifest"
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare yesno $dl_dir/waves_yesno data/manifests
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Compute fbank for yesno"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
./local/compute_fbank_yesno.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Prepare lang"
|
||||||
|
# NOTE: "<UNK> SIL" is added for implementation convenience
|
||||||
|
# as the graph compiler code requires that there is a OOV word
|
||||||
|
# in the lexicon.
|
||||||
|
(
|
||||||
|
echo "<SIL> SIL"
|
||||||
|
echo "YES Y"
|
||||||
|
echo "NO N"
|
||||||
|
echo "<UNK> SIL"
|
||||||
|
) > $lang_dir/lexicon.txt
|
||||||
|
|
||||||
|
./local/prepare_lang.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Prepare G"
|
||||||
|
# We use a unigram G
|
||||||
|
cat <<EOF > $lm_dir/G.arpa
|
||||||
|
|
||||||
|
\data\\
|
||||||
|
ngram 1=4
|
||||||
|
|
||||||
|
\1-grams:
|
||||||
|
-1 NO
|
||||||
|
-1 YES
|
||||||
|
-99 <s>
|
||||||
|
-1 </s>
|
||||||
|
|
||||||
|
\end\\
|
||||||
|
|
||||||
|
EOF
|
||||||
|
|
||||||
|
if [ ! -f $lm_dir/G.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="$lang_dir/words.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
$lm_dir/G.arpa > $lm_dir/G.fst.txt
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Compile HLG"
|
||||||
|
if [ ! -f $lang_dir/HLG.pt ]; then
|
||||||
|
./local/compile_hlg.py --lang-dir $lang_dir
|
||||||
|
fi
|
||||||
|
fi
|
1
egs/yesno/ASR/shared
Symbolic link
1
egs/yesno/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared/
|
260
egs/yesno/ASR/tdnn/asr_datamodule.py
Normal file
260
egs/yesno/ASR/tdnn/asr_datamodule.py
Normal file
@ -0,0 +1,260 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
|
from lhotse.dataset import (
|
||||||
|
BucketingSampler,
|
||||||
|
CutConcatenate,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SingleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.dataset.datamodule import DataModule
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class YesNoAsrDataModule(DataModule):
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
super().add_arguments(parser)
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--feature-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=30.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="The number of buckets for the BucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(self) -> DataLoader:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = self.train_cuts()
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = [
|
||||||
|
SpecAugment(
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=23))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using BucketingSampler.")
|
||||||
|
train_sampler = BucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
bucket_method="equal_duration",
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SingleCutSampler.")
|
||||||
|
train_sampler = SingleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self) -> DataLoader:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
cuts_test = self.test_cuts()
|
||||||
|
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=23)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = SingleCutSampler(
|
||||||
|
cuts_test, max_duration=self.args.max_duration
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test, batch_size=None, sampler=sampler, num_workers=1
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = load_manifest(self.args.feature_dir / "cuts_train.json.gz")
|
||||||
|
return cuts_train
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> List[CutSet]:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
cuts_test = load_manifest(self.args.feature_dir / "cuts_test.json.gz")
|
||||||
|
return cuts_test
|
308
egs/yesno/ASR/tdnn/decode.py
Executable file
308
egs/yesno/ASR/tdnn/decode.py
Executable file
@ -0,0 +1,308 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import YesNoAsrDataModule
|
||||||
|
from model import Tdnn
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.decode import get_lattice, one_best_decoding
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=9,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("tdnn/exp/"),
|
||||||
|
"lang_dir": Path("data/lang_phone"),
|
||||||
|
"lm_dir": Path("data/lm"),
|
||||||
|
"feature_dim": 23,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 8,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
batch: dict,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Decode one batch and return the result in a list-of-list.
|
||||||
|
Each sub list contains the word IDs for an utterance in the batch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding.
|
||||||
|
- params.method is "nbest", it uses nbest decoding.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
(https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py)
|
||||||
|
word_table:
|
||||||
|
It is the word symbol table.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. `len(ans)` == batch size.
|
||||||
|
"""
|
||||||
|
device = HLG.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
|
||||||
|
nnet_output = model(feature)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"],
|
||||||
|
supervisions["num_frames"],
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
) -> List[Tuple[List[int], List[int]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
word_table:
|
||||||
|
It is word symbol table.
|
||||||
|
Returns:
|
||||||
|
Return a tuple contains two elements (ref_text, hyp_text):
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
batch=batch,
|
||||||
|
word_table=word_table,
|
||||||
|
)
|
||||||
|
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results.extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
exp_dir: Path,
|
||||||
|
test_set_name: str,
|
||||||
|
results: List[Tuple[List[int], List[int]]],
|
||||||
|
) -> None:
|
||||||
|
"""Save results to `exp_dir`.
|
||||||
|
Args:
|
||||||
|
exp_dir:
|
||||||
|
The output directory. This function create the following files inside
|
||||||
|
this directory:
|
||||||
|
|
||||||
|
- recogs-{test_set_name}.text
|
||||||
|
|
||||||
|
It contains the reference and hypothesis results, like below::
|
||||||
|
|
||||||
|
ref=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES']
|
||||||
|
hyp=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES']
|
||||||
|
ref=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES']
|
||||||
|
hyp=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES']
|
||||||
|
|
||||||
|
- errs-{test_set_name}.txt
|
||||||
|
|
||||||
|
It contains the detailed WER.
|
||||||
|
test_set_name:
|
||||||
|
The name of the test set, which will be part of the result filename.
|
||||||
|
results:
|
||||||
|
A list of tuples, each of which contains (ref_words, hyp_words).
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
recog_path = exp_dir / f"recogs-{test_set_name}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = exp_dir / f"errs-{test_set_name}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
write_error_stats(f, f"{test_set_name}", results)
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
YesNoAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
model = Tdnn(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
num_classes=max_token_id + 1, # +1 for the blank symbol
|
||||||
|
)
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
yes_no = YesNoAsrDataModule(args)
|
||||||
|
test_dl = yes_no.test_dataloaders()
|
||||||
|
results = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
word_table=lexicon.word_table,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
exp_dir=params.exp_dir, test_set_name="test_set", results=results
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
84
egs/yesno/ASR/tdnn/model.py
Executable file
84
egs/yesno/ASR/tdnn/model.py
Executable file
@ -0,0 +1,84 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
# Copyright (c) 2021 Xiaomi Corp. (author: Fangjun Kuang)
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Tdnn(nn.Module):
|
||||||
|
def __init__(self, num_features: int, num_classes: int):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features:
|
||||||
|
Model input dimension.
|
||||||
|
num_classes:
|
||||||
|
Model output dimension
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.tdnn = nn.Sequential(
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=num_features,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=5,
|
||||||
|
padding=4,
|
||||||
|
dilation=2,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
|
nn.Conv1d(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=5,
|
||||||
|
padding=8,
|
||||||
|
dilation=4,
|
||||||
|
),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
|
)
|
||||||
|
self.output_linear = nn.Linear(in_features=32, out_features=num_classes)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor with shape [N, T, C]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The output tensor has shape [N, T, C]
|
||||||
|
"""
|
||||||
|
x = x.permute(0, 2, 1) # [N, T, C] -> [N, C, T]
|
||||||
|
x = self.tdnn(x)
|
||||||
|
x = x.permute(0, 2, 1) # [N, C, T] -> [N, T, C]
|
||||||
|
x = self.output_linear(x)
|
||||||
|
x = nn.functional.log_softmax(x, dim=-1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def test_tdnn():
|
||||||
|
num_features = 23
|
||||||
|
num_classes = 4
|
||||||
|
model = Tdnn(num_features=num_features, num_classes=num_classes)
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
N = 2
|
||||||
|
T = 100
|
||||||
|
C = num_features
|
||||||
|
x = torch.randn(N, T, C)
|
||||||
|
y = model(x)
|
||||||
|
print(x.shape)
|
||||||
|
print(y.shape)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_tdnn()
|
558
egs/yesno/ASR/tdnn/train.py
Executable file
558
egs/yesno/ASR/tdnn/train.py
Executable file
@ -0,0 +1,558 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from asr_datamodule import YesNoAsrDataModule
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import Tdnn
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
encode_supervisions,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=50,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- exp_dir: It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
|
||||||
|
- lang_dir: It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||||
|
and continue training from that checkpoint.
|
||||||
|
|
||||||
|
- num_epochs: Number of epochs to train.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||||
|
|
||||||
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("tdnn/exp"),
|
||||||
|
"lang_dir": Path("data/lang_phone"),
|
||||||
|
"lr": 1e-3,
|
||||||
|
"feature_dim": 23,
|
||||||
|
"weight_decay": 1e-6,
|
||||||
|
"start_epoch": 0,
|
||||||
|
"num_epochs": 50,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
"valid_interval": 10,
|
||||||
|
"beam_size": 10,
|
||||||
|
"reduction": "sum",
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
graph_compiler: CtcTrainingGraphCompiler,
|
||||||
|
is_training: bool,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Tdnn in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to build a decoding graph from a ctc topo and training
|
||||||
|
transcript. The training transcript is contained in the given `batch`,
|
||||||
|
while the ctc topo is built when this compiler is instantiated.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = graph_compiler.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
nnet_output = model(feature)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=1
|
||||||
|
)
|
||||||
|
decoding_graph = graph_compiler.compile(texts)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
nnet_output,
|
||||||
|
supervision_segments,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = k2.ctc_loss(
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
output_beam=params.beam_size,
|
||||||
|
reduction=params.reduction,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
# train_frames and valid_frames are used for printing.
|
||||||
|
if is_training:
|
||||||
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
else:
|
||||||
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
graph_compiler: CtcTrainingGraphCompiler,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_frames += params.valid_frames
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
s = torch.tensor([tot_loss, tot_frames], device=loss.device)
|
||||||
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||||
|
s = s.cpu().tolist()
|
||||||
|
tot_loss = s[0]
|
||||||
|
tot_frames = s[1]
|
||||||
|
|
||||||
|
params.valid_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if params.valid_loss < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = params.valid_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
graph_compiler: CtcTrainingGraphCompiler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to convert transcripts to FSAs.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.train_frames
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f},"
|
||||||
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||||
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
|
)
|
||||||
|
|
||||||
|
params.train_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_phone_id = max(lexicon.tokens)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||||
|
|
||||||
|
model = Tdnn(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
optimizer = optim.AdamW(
|
||||||
|
model.parameters(),
|
||||||
|
lr=params.lr,
|
||||||
|
weight_decay=params.weight_decay,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
yes_no = YesNoAsrDataModule(args)
|
||||||
|
train_dl = yes_no.train_dataloaders()
|
||||||
|
|
||||||
|
# There are only 60 waves: 30 files are used for training
|
||||||
|
# and the remaining 30 files are used for testing.
|
||||||
|
# We use test data as validation.
|
||||||
|
valid_dl = yes_no.test_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=None,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
YesNoAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -1,4 +1,4 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Piotr Żelasko
|
||||||
#
|
#
|
||||||
# See ../../LICENSE for clarification regarding multiple authors
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
|
Loading…
x
Reference in New Issue
Block a user