diff --git a/.github/workflows/run-yesno-recipe.yml b/.github/workflows/run-yesno-recipe.yml new file mode 100644 index 000000000..7e36139a3 --- /dev/null +++ b/.github/workflows/run-yesno-recipe.yml @@ -0,0 +1,89 @@ +# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com) + +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +name: run-yesno-recipe + +on: + push: + branches: + - master + pull_request: + branches: + - master + +jobs: + run-yesno-recipe: + runs-on: ${{ matrix.os }} + strategy: + matrix: + # os: [ubuntu-18.04, macos-10.15] + # TODO: enable macOS for CPU testing + os: [ubuntu-18.04] + python-version: [3.8] + fail-fast: false + + steps: + - uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Setup Python ${{ matrix.python-version }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python-version }} + + - name: Install libnsdfile and libsox + if: startsWith(matrix.os, 'ubuntu') + run: | + sudo apt update + sudo apt install -q -y libsndfile1-dev libsndfile1 ffmpeg + sudo apt install -q -y --fix-missing sox libsox-dev libsox-fmt-all + + - name: Install Python dependencies + run: | + python3 -m pip install --upgrade pip black flake8 + python3 -m pip install -U pip + python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/ + python3 -m pip install torchaudio==0.7.2 + python3 -m pip install git+https://github.com/lhotse-speech/lhotse + + # We are in ./icefall and there is a file: requirements.txt in it + python3 -m pip install -r requirements.txt + + - name: Run yesno recipe + shell: bash + working-directory: ${{github.workspace}} + run: | + export PYTHONPATH=$PWD:$PYTHONPATH + echo $PYTHONPATH + ls -lh + + # The following three lines are for macOS + lib_path=$(python -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())") + echo "lib_path: $lib_path" + export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH + ls -lh $lib_path + + cd egs/yesno/ASR + ./prepare.sh + python3 ./tdnn/train.py --num-epochs 100 + python3 ./tdnn/decode.py --epoch 99 + python3 ./tdnn/decode.py --epoch 95 + python3 ./tdnn/decode.py --epoch 90 + python3 ./tdnn/decode.py --epoch 80 + python3 ./tdnn/decode.py --epoch 70 + python3 ./tdnn/decode.py --epoch 60 + # TODO: Check that the WER is less than some value diff --git a/README.md b/README.md index b49a7f04c..0a9b657b3 100644 --- a/README.md +++ b/README.md @@ -48,10 +48,22 @@ python3 -c "import icefall; print(icefall.__file__)" It should print the path to `icefall`. -## Run recipes +## Recipes -At present, only LibriSpeech recipe is provided. Please -follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it. +At present, two recipes are provided: + + - [LibriSpeech][LibriSpeech] + - [yesno][yesno] [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing) + +### Yesno + +For the yesno recipe, training with 50 epochs takes less than 2 minutes using **CPU**. + +The WER is + +``` +[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ] +``` ## Use Pre-trained models @@ -60,6 +72,7 @@ for how to use pre-trained models. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing) +[yesno]: egs/yesno/ASR/README.md [LibriSpeech]: egs/librispeech/ASR/README.md [k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html# [k2]: https://github.com/k2-fsa/k2 diff --git a/egs/librispeech/ASR/local/compute_fbank_librispeech.py b/egs/librispeech/ASR/local/compute_fbank_librispeech.py index b89d2dfc2..b26034eb2 100755 --- a/egs/librispeech/ASR/local/compute_fbank_librispeech.py +++ b/egs/librispeech/ASR/local/compute_fbank_librispeech.py @@ -18,7 +18,7 @@ """ This file computes fbank features of the LibriSpeech dataset. -Its looks for manifests in the directory data/manifests. +It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ diff --git a/egs/librispeech/ASR/local/compute_fbank_musan.py b/egs/librispeech/ASR/local/compute_fbank_musan.py index e10a664b2..d44524e70 100755 --- a/egs/librispeech/ASR/local/compute_fbank_musan.py +++ b/egs/librispeech/ASR/local/compute_fbank_musan.py @@ -18,7 +18,7 @@ """ This file computes fbank features of the musan dataset. -Its looks for manifests in the directory data/manifests. +It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py index 2c3c7252a..91c1d6a96 100644 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py @@ -1,4 +1,4 @@ -# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# Copyright 2021 Piotr Żelasko # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -40,7 +40,7 @@ from icefall.utils import str2bool class LibriSpeechAsrDataModule(DataModule): """ - DataModule for K2 ASR experiments. + DataModule for k2 ASR experiments. It assumes there is always one train and valid dataloader, but there can be multiple test dataloaders (e.g. LibriSpeech test-clean and test-other). diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py index 130fc16a2..27e0b9643 100755 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py @@ -348,7 +348,7 @@ def main(): logging.info(f"device: {device}") HLG = k2.Fsa.from_dict( - torch.load("data/lang_phone/HLG.pt", map_location="cpu") + torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") ) HLG = HLG.to(device) assert HLG.requires_grad is False diff --git a/egs/yesno/ASR/README.md b/egs/yesno/ASR/README.md new file mode 100644 index 000000000..653c576fa --- /dev/null +++ b/egs/yesno/ASR/README.md @@ -0,0 +1,15 @@ +## Yesno recipe + +You can run the recipe with **CPU**. + + +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing) + +The above Colab notebook finishes the training using **CPU** +within two minutes (50 epochs in total). + +The WER is + +``` +[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ] +``` diff --git a/egs/yesno/ASR/local/compile_hlg.py b/egs/yesno/ASR/local/compile_hlg.py new file mode 100755 index 000000000..f2fafd013 --- /dev/null +++ b/egs/yesno/ASR/local/compile_hlg.py @@ -0,0 +1,134 @@ +#!/usr/bin/env python3 + +""" +This script takes as input lang_dir and generates HLG from + + - H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt + - L, the lexicon, built from lang_dir/L_disambig.pt + + Caution: We use a lexicon that contains disambiguation symbols + + - G, the LM, built from data/lm/G.fst.txt + +The generated HLG is saved in $lang_dir/HLG.pt +""" +import argparse +import logging +from pathlib import Path + +import k2 +import torch + +from icefall.lexicon import Lexicon + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + """, + ) + + return parser.parse_args() + + +def compile_HLG(lang_dir: str) -> k2.Fsa: + """ + Args: + lang_dir: + The language directory, e.g., data/lang_phone or data/lang_bpe_5000. + + Return: + An FSA representing HLG. + """ + lexicon = Lexicon(lang_dir) + max_token_id = max(lexicon.tokens) + logging.info(f"Building ctc_topo. max_token_id: {max_token_id}") + H = k2.ctc_topo(max_token_id) + L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt")) + + logging.info("Loading G.fst.txt") + with open("data/lm/G.fst.txt") as f: + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + + first_token_disambig_id = lexicon.token_table["#0"] + first_word_disambig_id = lexicon.word_table["#0"] + + L = k2.arc_sort(L) + G = k2.arc_sort(G) + + logging.info("Intersecting L and G") + LG = k2.compose(L, G) + logging.info(f"LG shape: {LG.shape}") + + logging.info("Connecting LG") + LG = k2.connect(LG) + logging.info(f"LG shape after k2.connect: {LG.shape}") + + logging.info(type(LG.aux_labels)) + logging.info("Determinizing LG") + + LG = k2.determinize(LG) + logging.info(type(LG.aux_labels)) + + logging.info("Connecting LG after k2.determinize") + LG = k2.connect(LG) + + logging.info("Removing disambiguation symbols on LG") + + LG.labels[LG.labels >= first_token_disambig_id] = 0 + + assert isinstance(LG.aux_labels, k2.RaggedInt) + LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0 + + LG = k2.remove_epsilon(LG) + logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}") + + LG = k2.connect(LG) + LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0) + + logging.info("Arc sorting LG") + LG = k2.arc_sort(LG) + + logging.info("Composing H and LG") + # CAUTION: The name of the inner_labels is fixed + # to `tokens`. If you want to change it, please + # also change other places in icefall that are using + # it. + HLG = k2.compose(H, LG, inner_labels="tokens") + + logging.info("Connecting LG") + HLG = k2.connect(HLG) + + logging.info("Arc sorting LG") + HLG = k2.arc_sort(HLG) + logging.info(f"HLG.shape: {HLG.shape}") + + return HLG + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + + if (lang_dir / "HLG.pt").is_file(): + logging.info(f"{lang_dir}/HLG.pt already exists - skipping") + return + + logging.info(f"Processing {lang_dir}") + + HLG = compile_HLG(lang_dir) + logging.info(f"Saving HLG.pt to {lang_dir}") + torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/yesno/ASR/local/compute_fbank_yesno.py b/egs/yesno/ASR/local/compute_fbank_yesno.py new file mode 100755 index 000000000..dad7319fd --- /dev/null +++ b/egs/yesno/ASR/local/compute_fbank_yesno.py @@ -0,0 +1,81 @@ +#!/usr/bin/env python3 + +""" +This file computes fbank features of the yesno dataset. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" + +import logging +import os +from pathlib import Path + +import torch +from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer +from lhotse.recipes.utils import read_manifests_if_cached + +from icefall.utils import get_executor + +# Torch's multithreaded behavior needs to be disabled or it wastes a +# lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + + +def compute_fbank_yesno(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + # This dataset is rather small, so we use only one job + num_jobs = min(1, os.cpu_count()) + num_mel_bins = 23 + + dataset_parts = ( + "train", + "test", + ) + manifests = read_manifests_if_cached( + dataset_parts=dataset_parts, output_dir=src_dir + ) + assert manifests is not None + + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + + with get_executor() as ex: # Initialize the executor only once. + for partition, m in manifests.items(): + if (output_dir / f"cuts_{partition}.json.gz").is_file(): + logging.info(f"{partition} already exists - skipping.") + continue + logging.info(f"Processing {partition}") + cut_set = CutSet.from_manifests( + recordings=m["recordings"], + supervisions=m["supervisions"], + ) + if "train" in partition: + cut_set = ( + cut_set + + cut_set.perturb_speed(0.9) + + cut_set.perturb_speed(1.1) + ) + cut_set = cut_set.compute_and_store_features( + extractor=extractor, + storage_path=f"{output_dir}/feats_{partition}", + # when an executor is specified, make more partitions + num_jobs=num_jobs if ex is None else 1, # use one job + executor=ex, + storage_type=LilcomHdf5Writer, + ) + cut_set.to_json(output_dir / f"cuts_{partition}.json.gz") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + + compute_fbank_yesno() diff --git a/egs/yesno/ASR/local/prepare_lang.py b/egs/yesno/ASR/local/prepare_lang.py new file mode 100755 index 000000000..f7fde7796 --- /dev/null +++ b/egs/yesno/ASR/local/prepare_lang.py @@ -0,0 +1,367 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang) + +""" +This script takes as input a lexicon file "data/lang_phone/lexicon.txt" +consisting of words and tokens (i.e., phones) and does the following: + +1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt + +2. Generate tokens.txt, the token table mapping a token to a unique integer. + +3. Generate words.txt, the word table mapping a word to a unique integer. + +4. Generate L.pt, in k2 format. It can be loaded by + + d = torch.load("L.pt") + lexicon = k2.Fsa.from_dict(d) + +5. Generate L_disambig.pt, in k2 format. +""" +import math +from collections import defaultdict +from pathlib import Path +from typing import Any, Dict, List, Tuple + +import k2 +import torch + +from icefall.lexicon import read_lexicon, write_lexicon + +Lexicon = List[Tuple[str, List[str]]] + + +def write_mapping(filename: str, sym2id: Dict[str, int]) -> None: + """Write a symbol to ID mapping to a file. + + Note: + No need to implement `read_mapping` as it can be done + through :func:`k2.SymbolTable.from_file`. + + Args: + filename: + Filename to save the mapping. + sym2id: + A dict mapping symbols to IDs. + Returns: + Return None. + """ + with open(filename, "w", encoding="utf-8") as f: + for sym, i in sym2id.items(): + f.write(f"{sym} {i}\n") + + +def get_tokens(lexicon: Lexicon) -> List[str]: + """Get tokens from a lexicon. + + Args: + lexicon: + It is the return value of :func:`read_lexicon`. + Returns: + Return a list of unique tokens. + """ + ans = set() + for _, tokens in lexicon: + ans.update(tokens) + sorted_ans = sorted(list(ans)) + return sorted_ans + + +def get_words(lexicon: Lexicon) -> List[str]: + """Get words from a lexicon. + + Args: + lexicon: + It is the return value of :func:`read_lexicon`. + Returns: + Return a list of unique words. + """ + ans = set() + for word, _ in lexicon: + ans.add(word) + sorted_ans = sorted(list(ans)) + return sorted_ans + + +def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]: + """It adds pseudo-token disambiguation symbols #1, #2 and so on + at the ends of tokens to ensure that all pronunciations are different, + and that none is a prefix of another. + + See also add_lex_disambig.pl from kaldi. + + Args: + lexicon: + It is returned by :func:`read_lexicon`. + Returns: + Return a tuple with two elements: + + - The output lexicon with disambiguation symbols + - The ID of the max disambiguation symbol that appears + in the lexicon + """ + + # (1) Work out the count of each token-sequence in the + # lexicon. + count = defaultdict(int) + for _, tokens in lexicon: + count[" ".join(tokens)] += 1 + + # (2) For each left sub-sequence of each token-sequence, note down + # that it exists (for identifying prefixes of longer strings). + issubseq = defaultdict(int) + for _, tokens in lexicon: + tokens = tokens.copy() + tokens.pop() + while tokens: + issubseq[" ".join(tokens)] = 1 + tokens.pop() + + # (3) For each entry in the lexicon: + # if the token sequence is unique and is not a + # prefix of another word, no disambig symbol. + # Else output #1, or #2, #3, ... if the same token-seq + # has already been assigned a disambig symbol. + ans = [] + + # We start with #1 since #0 has its own purpose + first_allowed_disambig = 1 + max_disambig = first_allowed_disambig - 1 + last_used_disambig_symbol_of = defaultdict(int) + + for word, tokens in lexicon: + tokenseq = " ".join(tokens) + assert tokenseq != "" + if issubseq[tokenseq] == 0 and count[tokenseq] == 1: + ans.append((word, tokens)) + continue + + cur_disambig = last_used_disambig_symbol_of[tokenseq] + if cur_disambig == 0: + cur_disambig = first_allowed_disambig + else: + cur_disambig += 1 + + if cur_disambig > max_disambig: + max_disambig = cur_disambig + last_used_disambig_symbol_of[tokenseq] = cur_disambig + tokenseq += f" #{cur_disambig}" + ans.append((word, tokenseq.split())) + return ans, max_disambig + + +def generate_id_map(symbols: List[str]) -> Dict[str, int]: + """Generate ID maps, i.e., map a symbol to a unique ID. + + Args: + symbols: + A list of unique symbols. + Returns: + A dict containing the mapping between symbols and IDs. + """ + return {sym: i for i, sym in enumerate(symbols)} + + +def add_self_loops( + arcs: List[List[Any]], disambig_token: int, disambig_word: int +) -> List[List[Any]]: + """Adds self-loops to states of an FST to propagate disambiguation symbols + through it. They are added on each state with non-epsilon output symbols + on at least one arc out of the state. + + See also fstaddselfloops.pl from Kaldi. One difference is that + Kaldi uses OpenFst style FSTs and it has multiple final states. + This function uses k2 style FSTs and it does not need to add self-loops + to the final state. + + The input label of a self-loop is `disambig_token`, while the output + label is `disambig_word`. + + Args: + arcs: + A list-of-list. The sublist contains + `[src_state, dest_state, label, aux_label, score]` + disambig_token: + It is the token ID of the symbol `#0`. + disambig_word: + It is the word ID of the symbol `#0`. + + Return: + Return new `arcs` containing self-loops. + """ + states_needs_self_loops = set() + for arc in arcs: + src, dst, ilabel, olabel, score = arc + if olabel != 0: + states_needs_self_loops.add(src) + + ans = [] + for s in states_needs_self_loops: + ans.append([s, s, disambig_token, disambig_word, 0]) + + return arcs + ans + + +def lexicon_to_fst( + lexicon: Lexicon, + token2id: Dict[str, int], + word2id: Dict[str, int], + sil_token: str = "SIL", + sil_prob: float = 0.5, + need_self_loops: bool = False, +) -> k2.Fsa: + """Convert a lexicon to an FST (in k2 format) with optional silence at + the beginning and end of each word. + + Args: + lexicon: + The input lexicon. See also :func:`read_lexicon` + token2id: + A dict mapping tokens to IDs. + word2id: + A dict mapping words to IDs. + sil_token: + The silence token. + sil_prob: + The probability for adding a silence at the beginning and end + of the word. + need_self_loops: + If True, add self-loop to states with non-epsilon output symbols + on at least one arc out of the state. The input label for this + self loop is `token2id["#0"]` and the output label is `word2id["#0"]`. + Returns: + Return an instance of `k2.Fsa` representing the given lexicon. + """ + assert sil_prob > 0.0 and sil_prob < 1.0 + # CAUTION: we use score, i.e, negative cost. + sil_score = math.log(sil_prob) + no_sil_score = math.log(1.0 - sil_prob) + + start_state = 0 + loop_state = 1 # words enter and leave from here + sil_state = 2 # words terminate here when followed by silence; this state + # has a silence transition to loop_state. + next_state = 3 # the next un-allocated state, will be incremented as we go. + arcs = [] + + assert token2id[""] == 0 + assert word2id[""] == 0 + + eps = 0 + + sil_token = token2id[sil_token] + + arcs.append([start_state, loop_state, eps, eps, no_sil_score]) + arcs.append([start_state, sil_state, eps, eps, sil_score]) + arcs.append([sil_state, loop_state, sil_token, eps, 0]) + + for word, tokens in lexicon: + assert len(tokens) > 0, f"{word} has no pronunciations" + cur_state = loop_state + + word = word2id[word] + tokens = [token2id[i] for i in tokens] + + for i in range(len(tokens) - 1): + w = word if i == 0 else eps + arcs.append([cur_state, next_state, tokens[i], w, 0]) + + cur_state = next_state + next_state += 1 + + # now for the last token of this word + # It has two out-going arcs, one to the loop state, + # the other one to the sil_state. + i = len(tokens) - 1 + w = word if i == 0 else eps + arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score]) + arcs.append([cur_state, sil_state, tokens[i], w, sil_score]) + + if need_self_loops: + disambig_token = token2id["#0"] + disambig_word = word2id["#0"] + arcs = add_self_loops( + arcs, + disambig_token=disambig_token, + disambig_word=disambig_word, + ) + + final_state = next_state + arcs.append([loop_state, final_state, -1, -1, 0]) + arcs.append([final_state]) + + arcs = sorted(arcs, key=lambda arc: arc[0]) + arcs = [[str(i) for i in arc] for arc in arcs] + arcs = [" ".join(arc) for arc in arcs] + arcs = "\n".join(arcs) + + fsa = k2.Fsa.from_str(arcs, acceptor=False) + return fsa + + +def main(): + out_dir = Path("data/lang_phone") + lexicon_filename = out_dir / "lexicon.txt" + sil_token = "SIL" + sil_prob = 0.5 + + lexicon = read_lexicon(lexicon_filename) + tokens = get_tokens(lexicon) + words = get_words(lexicon) + + lexicon_disambig, max_disambig = add_disambig_symbols(lexicon) + + for i in range(max_disambig + 1): + disambig = f"#{i}" + assert disambig not in tokens + tokens.append(f"#{i}") + + assert "" not in tokens + tokens = [""] + tokens + + assert "" not in words + assert "#0" not in words + assert "" not in words + assert "" not in words + + words = [""] + words + ["#0", "", ""] + + token2id = generate_id_map(tokens) + word2id = generate_id_map(words) + + write_mapping(out_dir / "tokens.txt", token2id) + write_mapping(out_dir / "words.txt", word2id) + write_lexicon(out_dir / "lexicon_disambig.txt", lexicon_disambig) + + L = lexicon_to_fst( + lexicon, + token2id=token2id, + word2id=word2id, + sil_token=sil_token, + sil_prob=sil_prob, + ) + + L_disambig = lexicon_to_fst( + lexicon_disambig, + token2id=token2id, + word2id=word2id, + sil_token=sil_token, + sil_prob=sil_prob, + need_self_loops=True, + ) + torch.save(L.as_dict(), out_dir / "L.pt") + torch.save(L_disambig.as_dict(), out_dir / "L_disambig.pt") + + if False: + # Just for debugging, will remove it + L.labels_sym = k2.SymbolTable.from_file(out_dir / "tokens.txt") + L.aux_labels_sym = k2.SymbolTable.from_file(out_dir / "words.txt") + L_disambig.labels_sym = L.labels_sym + L_disambig.aux_labels_sym = L.aux_labels_sym + L.draw(out_dir / "L.png", title="L") + L_disambig.draw(out_dir / "L_disambig.png", title="L_disambig") + + +if __name__ == "__main__": + main() diff --git a/egs/yesno/ASR/prepare.sh b/egs/yesno/ASR/prepare.sh new file mode 100755 index 000000000..9a0cc48bb --- /dev/null +++ b/egs/yesno/ASR/prepare.sh @@ -0,0 +1,93 @@ +#!/usr/bin/env bash + +set -eou pipefail + +stage=-1 +stop_stage=100 + +dl_dir=$PWD/download + +lang_dir=data/lang_phone +lm_dir=data/lm + +. shared/parse_options.sh || exit 1 + +mkdir -p $lang_dir +mkdir -p $lm_dir + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "stage 0: Download data" + mkdir -p $dl_dir + + if [ ! -f $dl_dir/waves_yesno/.completed ]; then + lhotse download yesno $dl_dir + fi +fi + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare yesno manifest" + mkdir -p data/manifests + lhotse prepare yesno $dl_dir/waves_yesno data/manifests +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Compute fbank for yesno" + mkdir -p data/fbank + ./local/compute_fbank_yesno.py +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Prepare lang" + # NOTE: " SIL" is added for implementation convenience + # as the graph compiler code requires that there is a OOV word + # in the lexicon. + ( + echo " SIL" + echo "YES Y" + echo "NO N" + echo " SIL" + ) > $lang_dir/lexicon.txt + + ./local/prepare_lang.py +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Prepare G" + # We use a unigram G + cat < $lm_dir/G.arpa + +\data\\ +ngram 1=4 + +\1-grams: +-1 NO +-1 YES +-99 +-1 + +\end\\ + +EOF + + if [ ! -f $lm_dir/G.fst.txt ]; then + python3 -m kaldilm \ + --read-symbol-table="$lang_dir/words.txt" \ + --disambig-symbol='#0' \ + $lm_dir/G.arpa > $lm_dir/G.fst.txt + fi +fi + +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Compile HLG" + if [ ! -f $lang_dir/HLG.pt ]; then + ./local/compile_hlg.py --lang-dir $lang_dir + fi +fi diff --git a/egs/yesno/ASR/shared b/egs/yesno/ASR/shared new file mode 120000 index 000000000..4c5e91438 --- /dev/null +++ b/egs/yesno/ASR/shared @@ -0,0 +1 @@ +../../../icefall/shared/ \ No newline at end of file diff --git a/egs/yesno/ASR/tdnn/asr_datamodule.py b/egs/yesno/ASR/tdnn/asr_datamodule.py new file mode 100644 index 000000000..8b2b44c8a --- /dev/null +++ b/egs/yesno/ASR/tdnn/asr_datamodule.py @@ -0,0 +1,260 @@ +# Copyright 2021 Piotr Żelasko +# 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import logging +from functools import lru_cache +from pathlib import Path +from typing import List + +from lhotse import CutSet, Fbank, FbankConfig, load_manifest +from lhotse.dataset import ( + BucketingSampler, + CutConcatenate, + K2SpeechRecognitionDataset, + PrecomputedFeatures, + SingleCutSampler, + SpecAugment, +) +from lhotse.dataset.input_strategies import OnTheFlyFeatures +from torch.utils.data import DataLoader + +from icefall.dataset.datamodule import DataModule +from icefall.utils import str2bool + + +class YesNoAsrDataModule(DataModule): + """ + DataModule for k2 ASR experiments. + It assumes there is always one train dataloader, + but there can be multiple test dataloaders (e.g. LibriSpeech test-clean + and test-other). + + It contains all the common data pipeline modules used in ASR + experiments, e.g.: + - dynamic batch size, + - bucketing samplers, + - cut concatenation, + - augmentation, + - on-the-fly feature extraction + """ + + @classmethod + def add_arguments(cls, parser: argparse.ArgumentParser): + super().add_arguments(parser) + group = parser.add_argument_group( + title="ASR data related options", + description="These options are used for the preparation of " + "PyTorch DataLoaders from Lhotse CutSet's -- they control the " + "effective batch sizes, sampling strategies, applied data " + "augmentations, etc.", + ) + group.add_argument( + "--feature-dir", + type=Path, + default=Path("data/fbank"), + help="Path to directory with train/test cuts.", + ) + group.add_argument( + "--max-duration", + type=int, + default=30.0, + help="Maximum pooled recordings duration (seconds) in a " + "single batch. You can reduce it if it causes CUDA OOM.", + ) + group.add_argument( + "--bucketing-sampler", + type=str2bool, + default=False, + help="When enabled, the batches will come from buckets of " + "similar duration (saves padding frames).", + ) + group.add_argument( + "--num-buckets", + type=int, + default=10, + help="The number of buckets for the BucketingSampler" + "(you might want to increase it for larger datasets).", + ) + group.add_argument( + "--concatenate-cuts", + type=str2bool, + default=False, + help="When enabled, utterances (cuts) will be concatenated " + "to minimize the amount of padding.", + ) + group.add_argument( + "--duration-factor", + type=float, + default=1.0, + help="Determines the maximum duration of a concatenated cut " + "relative to the duration of the longest cut in a batch.", + ) + group.add_argument( + "--gap", + type=float, + default=1.0, + help="The amount of padding (in seconds) inserted between " + "concatenated cuts. This padding is filled with noise when " + "noise augmentation is used.", + ) + group.add_argument( + "--on-the-fly-feats", + type=str2bool, + default=False, + help="When enabled, use on-the-fly cut mixing and feature " + "extraction. Will drop existing precomputed feature manifests " + "if available.", + ) + group.add_argument( + "--shuffle", + type=str2bool, + default=True, + help="When enabled (=default), the examples will be " + "shuffled for each epoch.", + ) + group.add_argument( + "--return-cuts", + type=str2bool, + default=True, + help="When enabled, each batch will have the " + "field: batch['supervisions']['cut'] with the cuts that " + "were used to construct it.", + ) + + group.add_argument( + "--num-workers", + type=int, + default=2, + help="The number of training dataloader workers that " + "collect the batches.", + ) + + def train_dataloaders(self) -> DataLoader: + logging.info("About to get train cuts") + cuts_train = self.train_cuts() + + logging.info("About to create train dataset") + transforms = [] + if self.args.concatenate_cuts: + logging.info( + f"Using cut concatenation with duration factor " + f"{self.args.duration_factor} and gap {self.args.gap}." + ) + # Cut concatenation should be the first transform in the list, + # so that if we e.g. mix noise in, it will fill the gaps between + # different utterances. + transforms = [ + CutConcatenate( + duration_factor=self.args.duration_factor, gap=self.args.gap + ) + ] + transforms + + input_transforms = [ + SpecAugment( + num_frame_masks=2, + features_mask_size=27, + num_feature_masks=2, + frames_mask_size=100, + ) + ] + + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.on_the_fly_feats: + # NOTE: the PerturbSpeed transform should be added only if we + # remove it from data prep stage. + # Add on-the-fly speed perturbation; since originally it would + # have increased epoch size by 3, we will apply prob 2/3 and use + # 3x more epochs. + # Speed perturbation probably should come first before + # concatenation, but in principle the transforms order doesn't have + # to be strict (e.g. could be randomized) + # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa + # Drop feats to be on the safe side. + train = K2SpeechRecognitionDataset( + cut_transforms=transforms, + input_strategy=OnTheFlyFeatures( + Fbank(FbankConfig(num_mel_bins=23)) + ), + input_transforms=input_transforms, + return_cuts=self.args.return_cuts, + ) + + if self.args.bucketing_sampler: + logging.info("Using BucketingSampler.") + train_sampler = BucketingSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + num_buckets=self.args.num_buckets, + bucket_method="equal_duration", + drop_last=True, + ) + else: + logging.info("Using SingleCutSampler.") + train_sampler = SingleCutSampler( + cuts_train, + max_duration=self.args.max_duration, + shuffle=self.args.shuffle, + ) + logging.info("About to create train dataloader") + + train_dl = DataLoader( + train, + sampler=train_sampler, + batch_size=None, + num_workers=self.args.num_workers, + persistent_workers=False, + ) + + return train_dl + + def test_dataloaders(self) -> DataLoader: + logging.info("About to get test cuts") + cuts_test = self.test_cuts() + + logging.debug("About to create test dataset") + test = K2SpeechRecognitionDataset( + input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=23))) + if self.args.on_the_fly_feats + else PrecomputedFeatures(), + return_cuts=self.args.return_cuts, + ) + sampler = SingleCutSampler( + cuts_test, max_duration=self.args.max_duration + ) + logging.debug("About to create test dataloader") + test_dl = DataLoader( + test, batch_size=None, sampler=sampler, num_workers=1 + ) + return test_dl + + @lru_cache() + def train_cuts(self) -> CutSet: + logging.info("About to get train cuts") + cuts_train = load_manifest(self.args.feature_dir / "cuts_train.json.gz") + return cuts_train + + @lru_cache() + def test_cuts(self) -> List[CutSet]: + logging.info("About to get test cuts") + cuts_test = load_manifest(self.args.feature_dir / "cuts_test.json.gz") + return cuts_test diff --git a/egs/yesno/ASR/tdnn/decode.py b/egs/yesno/ASR/tdnn/decode.py new file mode 100755 index 000000000..a87219010 --- /dev/null +++ b/egs/yesno/ASR/tdnn/decode.py @@ -0,0 +1,308 @@ +#!/usr/bin/env python3 + + +import argparse +import logging +from pathlib import Path +from typing import List, Tuple + +import k2 +import torch +import torch.nn as nn +from asr_datamodule import YesNoAsrDataModule +from model import Tdnn + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.decode import get_lattice, one_best_decoding +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=9, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "exp_dir": Path("tdnn/exp/"), + "lang_dir": Path("data/lang_phone"), + "lm_dir": Path("data/lm"), + "feature_dim": 23, + "search_beam": 20, + "output_beam": 8, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + batch: dict, + word_table: k2.SymbolTable, +) -> List[List[int]]: + """Decode one batch and return the result in a list-of-list. + Each sub list contains the word IDs for an utterance in the batch. + + Args: + params: + It's the return value of :func:`get_params`. + + - params.method is "1best", it uses 1best decoding. + - params.method is "nbest", it uses nbest decoding. + + model: + The neural model. + HLG: + The decoding graph. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + (https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py) + word_table: + It is the word symbol table. + Returns: + Return the decoding result. `len(ans)` == batch size. + """ + device = HLG.device + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device) + # at entry, feature is [N, T, C] + + nnet_output = model(feature) + # nnet_output is [N, T, C] + + supervisions = batch["supervisions"] + + supervision_segments = torch.stack( + ( + supervisions["sequence_idx"], + supervisions["start_frame"], + supervisions["num_frames"], + ), + 1, + ).to(torch.int32) + + lattice = get_lattice( + nnet_output=nnet_output, + HLG=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + return hyps + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + word_table: k2.SymbolTable, +) -> List[Tuple[List[int], List[int]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. + word_table: + It is word symbol table. + Returns: + Return a tuple contains two elements (ref_text, hyp_text): + The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = [] + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + + hyps = decode_one_batch( + params=params, + model=model, + HLG=HLG, + batch=batch, + word_table=word_table, + ) + + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + + results.extend(this_batch) + + num_cuts += len(batch["supervisions"]["text"]) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + return results + + +def save_results( + exp_dir: Path, + test_set_name: str, + results: List[Tuple[List[int], List[int]]], +) -> None: + """Save results to `exp_dir`. + Args: + exp_dir: + The output directory. This function create the following files inside + this directory: + + - recogs-{test_set_name}.text + + It contains the reference and hypothesis results, like below:: + + ref=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES'] + hyp=['NO', 'NO', 'NO', 'YES', 'NO', 'NO', 'NO', 'YES'] + ref=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES'] + hyp=['NO', 'NO', 'YES', 'NO', 'YES', 'NO', 'NO', 'YES'] + + - errs-{test_set_name}.txt + + It contains the detailed WER. + test_set_name: + The name of the test set, which will be part of the result filename. + results: + A list of tuples, each of which contains (ref_words, hyp_words). + Returns: + Return None. + """ + recog_path = exp_dir / f"recogs-{test_set_name}.txt" + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = exp_dir / f"errs-{test_set_name}.txt" + with open(errs_filename, "w") as f: + write_error_stats(f, f"{test_set_name}", results) + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + +@torch.no_grad() +def main(): + parser = get_parser() + YesNoAsrDataModule.add_arguments(parser) + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + + setup_logger(f"{params.exp_dir}/log/log-decode") + logging.info("Decoding started") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") + ) + HLG = HLG.to(device) + assert HLG.requires_grad is False + + model = Tdnn( + num_features=params.feature_dim, + num_classes=max_token_id + 1, # +1 for the blank symbol + ) + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames)) + + model.to(device) + model.eval() + + yes_no = YesNoAsrDataModule(args) + test_dl = yes_no.test_dataloaders() + results = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + word_table=lexicon.word_table, + ) + + save_results( + exp_dir=params.exp_dir, test_set_name="test_set", results=results + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/yesno/ASR/tdnn/model.py b/egs/yesno/ASR/tdnn/model.py new file mode 100755 index 000000000..df0aa246d --- /dev/null +++ b/egs/yesno/ASR/tdnn/model.py @@ -0,0 +1,84 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2021 Xiaomi Corp. (author: Fangjun Kuang) + + +import torch +import torch.nn as nn + + +class Tdnn(nn.Module): + def __init__(self, num_features: int, num_classes: int): + """ + Args: + num_features: + Model input dimension. + num_classes: + Model output dimension + """ + super().__init__() + + self.tdnn = nn.Sequential( + nn.Conv1d( + in_channels=num_features, + out_channels=32, + kernel_size=3, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=32, affine=False), + nn.Conv1d( + in_channels=32, + out_channels=32, + kernel_size=5, + padding=4, + dilation=2, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=32, affine=False), + nn.Conv1d( + in_channels=32, + out_channels=32, + kernel_size=5, + padding=8, + dilation=4, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=32, affine=False), + ) + self.output_linear = nn.Linear(in_features=32, out_features=num_classes) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + x: + The input tensor with shape [N, T, C] + + Returns: + The output tensor has shape [N, T, C] + """ + x = x.permute(0, 2, 1) # [N, T, C] -> [N, C, T] + x = self.tdnn(x) + x = x.permute(0, 2, 1) # [N, C, T] -> [N, T, C] + x = self.output_linear(x) + x = nn.functional.log_softmax(x, dim=-1) + return x + + +def test_tdnn(): + num_features = 23 + num_classes = 4 + model = Tdnn(num_features=num_features, num_classes=num_classes) + num_param = sum([p.numel() for p in model.parameters()]) + print(f"Number of model parameters: {num_param}") + N = 2 + T = 100 + C = num_features + x = torch.randn(N, T, C) + y = model(x) + print(x.shape) + print(y.shape) + + +if __name__ == "__main__": + test_tdnn() diff --git a/egs/yesno/ASR/tdnn/train.py b/egs/yesno/ASR/tdnn/train.py new file mode 100755 index 000000000..a5a248c9c --- /dev/null +++ b/egs/yesno/ASR/tdnn/train.py @@ -0,0 +1,558 @@ +#!/usr/bin/env python3 + +import argparse +import logging +from pathlib import Path +from shutil import copyfile +from typing import Optional + +import k2 +import torch +import torch.distributed as dist +import torch.multiprocessing as mp +import torch.nn as nn +import torch.optim as optim +from asr_datamodule import YesNoAsrDataModule +from lhotse.utils import fix_random_seed +from model import Tdnn +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.utils.tensorboard import SummaryWriter + +from icefall.checkpoint import load_checkpoint +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.dist import cleanup_dist, setup_dist +from icefall.graph_compiler import CtcTrainingGraphCompiler +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + encode_supervisions, + setup_logger, + str2bool, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=50, + help="Number of epochs to train.", + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + is saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - exp_dir: It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + + - lang_dir: It contains language related input files such as + "lexicon.txt" + + - lr: It specifies the initial learning rate + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - weight_decay: The weight_decay for the optimizer. + + - subsampling_factor: The subsampling factor for the model. + + - start_epoch: If it is not zero, load checkpoint `start_epoch-1` + and continue training from that checkpoint. + + - num_epochs: Number of epochs to train. + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - valid_interval: Run validation if batch_idx % valid_interval` is 0 + + - beam_size: It is used in k2.ctc_loss + + - reduction: It is used in k2.ctc_loss + + - use_double_scores: It is used in k2.ctc_loss + """ + params = AttributeDict( + { + "exp_dir": Path("tdnn/exp"), + "lang_dir": Path("data/lang_phone"), + "lr": 1e-3, + "feature_dim": 23, + "weight_decay": 1e-6, + "start_epoch": 0, + "num_epochs": 50, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 10, + "valid_interval": 10, + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, +) -> None: + """Load checkpoint from file. + + If params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. Otherwise, this function does nothing. + + Apart from loading state dict for `model`, `optimizer` and `scheduler`, + it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The learning rate scheduler we are using. + Returns: + Return None. + """ + if params.start_epoch <= 0: + return + + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler._LRScheduler, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + batch: dict, + graph_compiler: CtcTrainingGraphCompiler, + is_training: bool, +): + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Tdnn in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = graph_compiler.device + feature = batch["inputs"] + # at entry, feature is [N, T, C] + assert feature.ndim == 3 + feature = feature.to(device) + + with torch.set_grad_enabled(is_training): + nnet_output = model(feature) + # nnet_output is [N, T, C] + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + supervisions = batch["supervisions"] + supervision_segments, texts = encode_supervisions( + supervisions, subsampling_factor=1 + ) + decoding_graph = graph_compiler.compile(texts) + + dense_fsa_vec = k2.DenseFsaVec( + nnet_output, + supervision_segments, + ) + + loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + + assert loss.requires_grad == is_training + + # train_frames and valid_frames are used for printing. + if is_training: + params.train_frames = supervision_segments[:, 2].sum().item() + else: + params.valid_frames = supervision_segments[:, 2].sum().item() + + return loss + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> None: + """Run the validation process. The validation loss + is saved in `params.valid_loss`. + """ + model.eval() + + tot_loss = 0.0 + tot_frames = 0.0 + for batch_idx, batch in enumerate(valid_dl): + loss = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=False, + ) + assert loss.requires_grad is False + + loss_cpu = loss.detach().cpu().item() + tot_loss += loss_cpu + tot_frames += params.valid_frames + + if world_size > 1: + s = torch.tensor([tot_loss, tot_frames], device=loss.device) + dist.all_reduce(s, op=dist.ReduceOp.SUM) + s = s.cpu().tolist() + tot_loss = s[0] + tot_frames = s[1] + + params.valid_loss = tot_loss / tot_frames + + if params.valid_loss < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = params.valid_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + graph_compiler: CtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + graph_compiler: + It is used to convert transcripts to FSAs. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + """ + model.train() + + tot_loss = 0.0 # sum of losses over all batches + tot_frames = 0.0 # sum of frames over all batches + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + loss = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=True, + ) + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + + optimizer.zero_grad() + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + + loss_cpu = loss.detach().cpu().item() + + tot_frames += params.train_frames + tot_loss += loss_cpu + tot_avg_loss = tot_loss / tot_frames + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, batch {batch_idx}, " + f"batch avg loss {loss_cpu/params.train_frames:.4f}, " + f"total avg loss: {tot_avg_loss:.4f}, " + f"batch size: {batch_size}" + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info( + f"Epoch {params.cur_epoch}, valid loss {params.valid_loss:.4f}," + f" best valid loss: {params.best_valid_loss:.4f} " + f"best valid epoch: {params.best_valid_epoch}" + ) + + params.train_loss = tot_loss / tot_frames + + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(42) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + logging.info(params) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + lexicon = Lexicon(params.lang_dir) + max_phone_id = max(lexicon.tokens) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + + graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) + + model = Tdnn( + num_features=params.feature_dim, + num_classes=max_phone_id + 1, # +1 for the blank symbol + ) + + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + model = DDP(model, device_ids=[rank]) + + optimizer = optim.AdamW( + model.parameters(), + lr=params.lr, + weight_decay=params.weight_decay, + ) + + if checkpoints: + optimizer.load_state_dict(checkpoints["optimizer"]) + + yes_no = YesNoAsrDataModule(args) + train_dl = yes_no.train_dataloaders() + + # There are only 60 waves: 30 files are used for training + # and the remaining 30 files are used for testing. + # We use test data as validation. + valid_dl = yes_no.test_dataloaders() + + for epoch in range(params.start_epoch, params.num_epochs): + train_dl.sampler.set_epoch(epoch) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + ) + + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + scheduler=None, + rank=rank, + ) + + logging.info("Done!") + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def main(): + parser = get_parser() + YesNoAsrDataModule.add_arguments(parser) + args = parser.parse_args() + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +if __name__ == "__main__": + main() diff --git a/icefall/dataset/datamodule.py b/icefall/dataset/datamodule.py index 97767ef9d..97918ffd8 100644 --- a/icefall/dataset/datamodule.py +++ b/icefall/dataset/datamodule.py @@ -1,4 +1,4 @@ -# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# Copyright 2021 Piotr Żelasko # # See ../../LICENSE for clarification regarding multiple authors #