icefall/egs/librispeech/ASR/local/compute_fbank_musan.py
Fangjun Kuang 6c2c9b9d74
Add recipe for the yes_no dataset. (#16)
* Add recipe for the yes_no dataset.

* Refactoring: Remove unused code.

* Add Colab notebook for the yesno dataset.

* Add GitHub actions to run yesno.

* Fix a typo.

* Minor fixes.

* Train more epochs for GitHub actions.

* Minor fixes.

* Minor fixes.

* Fix style issues.
2021-08-23 11:36:29 +08:00

98 lines
3.0 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the musan dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import logging
import os
from pathlib import Path
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_musan():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
num_mel_bins = 80
dataset_parts = (
"music",
"speech",
"noise",
)
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir
)
assert manifests is not None
musan_cuts_path = output_dir / "cuts_musan.json.gz"
if musan_cuts_path.is_file():
logging.info(f"{musan_cuts_path} already exists - skipping")
return
logging.info("Extracting features for Musan")
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
# create chunks of Musan with duration 5 - 10 seconds
musan_cuts = (
CutSet.from_manifests(
recordings=combine(
part["recordings"] for part in manifests.values()
)
)
.cut_into_windows(10.0)
.filter(lambda c: c.duration > 5)
.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/feats_musan",
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomHdf5Writer,
)
)
musan_cuts.to_json(musan_cuts_path)
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_musan()