mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
3.9 KiB
3.9 KiB
Results
whisper_llm_zh finetuning results
Model | Training Dataset | Speech Encoder | LLM | Projector |
---|---|---|---|---|
yuekai/icefall_asr_aishell_whisper_qwen2_1.5B | Aishell1 | whisper-large-v2-aishell1-ft, freeze | Qwen2-1.5B-Instruct, LoRA | Linear, 8x downsample |
yuekai/icefall_asr_multi-hans_whisper_qwen2_1.5B | Multi-hans-zh | whisper-large-v2-multi-hans-ft, freeze | Qwen2-1.5B-Instruct, LoRA | Linear, 8x downsample |
CER Details:
Model | yuekai/icefall_asr_aishell_whisper_qwen2_1.5B | yuekai/icefall_asr_multi-hans_whisper_qwen2_1.5B |
---|---|---|
Split | Greedy Search | Greedy Search |
aishell-1 dev | - | 0.66 |
aishell-1 test | 3.62 | 0.68 |
aishell-2 dev | - | 2.67 |
aishell-2 test | - | 2.94 |
aishell-4 test | - | 16.20 |
alimeeting eval | - | 30.86 |
alimeeting test | - | 40.50 |
magicdata dev | - | 2.50 |
magicdata test | - | 1.70 |
kespeech-asr dev phase1 | - | 6.22 |
kespeech-asr dev phase2 | - | 2.18 |
kespeech-asr test | - | 6.59 |
WenetSpeech dev | - | 4.59 |
WenetSpeech test_meeting | - | 6.41 |
WenetSpeech tes_net | - | 6.63 |
SPEECHIO Avg 001-026 | - | 4.80 |
Command for training is: |
pip install -r whisper_llm_zh/requirements.txt
pip install huggingface_hub['cli']
mkdir -p models/whisper models/qwen
# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
# huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-1.5B-Instruct
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
--max-duration 200 \
--exp-dir ./whisper_llm_zh/exp_test \
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
--llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
--manifest-dir data/fbank \
--deepspeed \
--deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
--use-flash-attn True \
--use-lora True --unfreeze-llm True
Command for decoding using fine-tuned models:
mkdir -p models/whisper models/qwen models/checkpoint
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B
# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt
python3 ./whisper_llm_zh/decode.py \
--max-duration 80 \
--exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
--llm-path-or-name models/qwen \
--epoch 999 --avg 1 \
--manifest-dir data/fbank \
--use-flash-attn True \
--use-lora True --dataset aishell