3.9 KiB

Results

whisper_llm_zh finetuning results

Model Training Dataset Speech Encoder LLM Projector
yuekai/icefall_asr_aishell_whisper_qwen2_1.5B Aishell1 whisper-large-v2-aishell1-ft, freeze Qwen2-1.5B-Instruct, LoRA Linear, 8x downsample
yuekai/icefall_asr_multi-hans_whisper_qwen2_1.5B Multi-hans-zh whisper-large-v2-multi-hans-ft, freeze Qwen2-1.5B-Instruct, LoRA Linear, 8x downsample

CER Details:

Model yuekai/icefall_asr_aishell_whisper_qwen2_1.5B yuekai/icefall_asr_multi-hans_whisper_qwen2_1.5B
Split Greedy Search Greedy Search
aishell-1 dev - 0.66
aishell-1 test 3.62 0.68
aishell-2 dev - 2.67
aishell-2 test - 2.94
aishell-4 test - 16.20
alimeeting eval - 30.86
alimeeting test - 40.50
magicdata dev - 2.50
magicdata test - 1.70
kespeech-asr dev phase1 - 6.22
kespeech-asr dev phase2 - 2.18
kespeech-asr test - 6.59
WenetSpeech dev - 4.59
WenetSpeech test_meeting - 6.41
WenetSpeech tes_net - 6.63
SPEECHIO Avg 001-026 - 4.80
Command for training is:
pip install -r whisper_llm_zh/requirements.txt

pip install huggingface_hub['cli']
mkdir -p models/whisper models/qwen

# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt

# huggingface-clie download  --local-dir models/qwen     Qwen/Qwen2-7B-Instruct
huggingface-clie download  --local-dir models/qwen     Qwen/Qwen2-1.5B-Instruct

torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
  --max-duration 200 \
  --exp-dir ./whisper_llm_zh/exp_test \
  --speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
  --llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
  --manifest-dir data/fbank \
  --deepspeed \
  --deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
  --use-flash-attn True \
  --use-lora True --unfreeze-llm True

Command for decoding using fine-tuned models:

mkdir -p models/whisper models/qwen models/checkpoint
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B

# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt

huggingface-clie download  --local-dir models/qwen     Qwen/Qwen2-7B-Instruct

mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt

python3 ./whisper_llm_zh/decode.py \
  --max-duration 80 \
  --exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
  --speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt  \
  --llm-path-or-name models/qwen \
  --epoch 999 --avg 1 \
  --manifest-dir data/fbank \
  --use-flash-attn True \
  --use-lora True --dataset aishell