icefall/egs/libriheavy/TTS/prepare.sh
yfyeung f90c3ae3ec add extract speech tokens
update prepare.sh

update

update

add attach_speech_tokens
2024-11-05 02:20:28 -08:00

166 lines
5.1 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/librilight
# You can find small, medium, large, etc. inside it.
#
# - $dl_dir/libriheavy
# You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it.
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
4000
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
tokens_dir=data/tokens
manifests_dir=data/manifests
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download audio data."
# If you have pre-downloaded it to /path/to/librilight,
# you can create a symlink
#
# ln -sfv /path/to/librilight $dl_dir/librilight
#
mkdir -p $dl_dir/librilight
for subset in small medium large; do
log "Downloading ${subset} subset."
if [ ! -d $dl_dir/librilight/${subset} ]; then
wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar
tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight
else
log "Skipping download, ${subset} subset exists."
fi
done
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download manifests from huggingface."
# If you have pre-downloaded it to /path/to/libriheavy,
# you can create a symlink
#
# ln -sfv /path/to/libriheavy $dl_dir/libriheavy
#
mkdir -p $dl_dir/libriheavy
for subset in small medium large dev test_clean test_other; do
if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Downloading ${subset} subset."
wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz
else
log "Skipping download, ${subset} subset exists."
fi
done
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare Libriheavy manifests"
mkdir -p $manifests_dir
for subset in small medium large dev test_clean test_other; do
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
log "Prepare manifest for subset : ${subset}"
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir
fi
done
fi
num_per_split=200000
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Split medium and large subsets."
for subset in medium large; do
log "Spliting subset : $subset"
split_dir=$manifests_dir/libriheavy_${subset}_split
mkdir -p $split_dir
if [ ! -e $split_dir/.split_completed ]; then
lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split
touch $split_dir/.split_completed
fi
done
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Train BPE model for normalized text"
if [ ! -f data/texts ]; then
gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \
| jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \
| ./local/norm_text.py > data/texts
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
cp data/texts $lang_dir/text
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/text
fi
done
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Extract speech tokens."
for subset in small medium large; do
log "Extract speech tokens for subset: $subset"
output_dir=$tokens_dir/libriheavy_${subset}
mkdir -p $tokens_dir
if [ ! -e $tokens_dir/.extract_completed ]; then
torchrun --nproc_per_node=8 \
--nnodes=1 \
--rdzv_id=2024 \
--rdzv_backend="c10d" \
--rdzv_endpoint="localhost:0" \
`which s3tokenizer` \
--cuts_path $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz \
--device "cuda" \
--output_dir $output_dir \
--batch_size 32 \
--model "speech_tokenizer_v1"
cat $output_dir/part* | gzip > $output_dir/libriheavy_${subset}.jsonl.gz && rm -rf $output_dir
touch $output_dir/..extract_completed
fi
done
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Attach speech tokens."
for subset in small medium large; do
log "Attach speech tokens for subset: $subset"
if [ ! -e $tokens_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
./local/attach_speech_tokens.py --subset $subset
fi
done
fi