#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/librilight # You can find small, medium, large, etc. inside it. # # - $dl_dir/libriheavy # You can find libriheavy_cuts_small.jsonl.gz, libriheavy_cuts_medium.jsonl.gz, etc. inside it. dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 4000 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data tokens_dir=data/tokens manifests_dir=data/manifests log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download audio data." # If you have pre-downloaded it to /path/to/librilight, # you can create a symlink # # ln -sfv /path/to/librilight $dl_dir/librilight # mkdir -p $dl_dir/librilight for subset in small medium large; do log "Downloading ${subset} subset." if [ ! -d $dl_dir/librilight/${subset} ]; then wget -P $dl_dir/librilight -c https://dl.fbaipublicfiles.com/librilight/data/${subset}.tar tar xf $dl_dir/librilight/${subset}.tar -C $dl_dir/librilight else log "Skipping download, ${subset} subset exists." fi done fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download manifests from huggingface." # If you have pre-downloaded it to /path/to/libriheavy, # you can create a symlink # # ln -sfv /path/to/libriheavy $dl_dir/libriheavy # mkdir -p $dl_dir/libriheavy for subset in small medium large dev test_clean test_other; do if [ ! -e $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz ]; then log "Downloading ${subset} subset." wget -P $dl_dir/libriheavy -c https://huggingface.co/datasets/pkufool/libriheavy/resolve/main/libriheavy_cuts_${subset}.jsonl.gz else log "Skipping download, ${subset} subset exists." fi done fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare Libriheavy manifests" mkdir -p $manifests_dir for subset in small medium large dev test_clean test_other; do if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then log "Prepare manifest for subset : ${subset}" ./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir fi done fi num_per_split=200000 if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Split medium and large subsets." for subset in medium large; do log "Spliting subset : $subset" split_dir=$manifests_dir/libriheavy_${subset}_split mkdir -p $split_dir if [ ! -e $split_dir/.split_completed ]; then lhotse split-lazy $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz $split_dir $num_per_split touch $split_dir/.split_completed fi done fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Train BPE model for normalized text" if [ ! -f data/texts ]; then gunzip -c $manifests_dir/libriheavy_cuts_medium.jsonl.gz \ | jq '.supervisions[].text' | sed 's/"//;s/\\//g;s/"$//' \ | ./local/norm_text.py > data/texts fi for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir cp data/texts $lang_dir/text if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/text fi done fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Extract speech tokens." for subset in small medium large; do log "Extract speech tokens for subset: $subset" output_dir=$tokens_dir/libriheavy_${subset} mkdir -p $tokens_dir if [ ! -e $tokens_dir/.extract_completed ]; then torchrun --nproc_per_node=8 \ --nnodes=1 \ --rdzv_id=2024 \ --rdzv_backend="c10d" \ --rdzv_endpoint="localhost:0" \ `which s3tokenizer` \ --cuts_path $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz \ --device "cuda" \ --output_dir $output_dir \ --batch_size 32 \ --model "speech_tokenizer_v1" cat $output_dir/part* | gzip > $output_dir/libriheavy_${subset}.jsonl.gz && rm -rf $output_dir touch $output_dir/..extract_completed fi done fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Attach speech tokens." for subset in small medium large; do log "Attach speech tokens for subset: $subset" if [ ! -e $tokens_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then ./local/attach_speech_tokens.py --subset $subset fi done fi